
Deep Learning for Compilers

Chris Cummins
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2020

Abstract
Constructing compilers is hard. Optimising compilers are multi-million dollar projects

spanning years of development, yet remain unable to fully exploit the available perfor-

mance, and are prone to bugs. The rapid transition to heterogeneous parallelism and

diverse architectures has raised demand for aggressively-optimising compilers to an

all time high, leaving compiler developers struggling to keep up. What is needed are

better tools to simplify compiler construction.

This thesis presents new techniques that dramatically lower the cost of compiler

construction, while improving robustness and performance. The enabling insight for

this research is the leveraging of deep learning to model the correlations between

source code and program behaviour, enabling tasks which previously required sig-

nificant engineering effort to be automated. This is demonstrated in three domains:

First, a generative model for compiler benchmarks is developed. The model re-

quires no prior knowledge of programming languages, yet produces output of such

quality that professional software developers cannot distinguish generated from hand-

written programs. The efficacy of the generator is demonstrated by supplementing the

training data of predictive models for compiler optimisations. The generator yields an

automatic improvement in heuristic performance, and exposes weaknesses in state-of-

the-art approaches which, when corrected, yield further performance improvements.

Second, a compiler fuzzer is developed which is far simpler than prior techniques.

By learning a generative model rather than engineering a generator from scratch, it is

implemented in 100× fewer lines of code than the state-of-the-art, yet is capable of

exposing bugs which prior techniques cannot. An extensive testing campaign reveals

67 new bugs in OpenCL compilers, many of which have now been fixed.

Finally, this thesis addresses the challenge of feature design. A methodology for

learning compiler heuristics is presented that, in contrast to prior approaches, learns

directly over the raw textual representation of programs. The approach outperforms

state-of-the-art models with hand-engineered features in two challenging optimisation

domains, without requiring any expert guidance. Additionally, the methodology en-

ables models trained in one task to be adapted to perform another, permitting the novel

transfer of information between optimisation problem domains.

The techniques developed in these three contrasting domains demonstrate the ex-

citing potential of deep learning to simplify and improve compiler construction. The

outcomes of this thesis enable new lines of research to equip compiler developers to

keep up with the rapidly evolving landscape of heterogeneous architectures.

iii

Acknowledgements

It has been my utmost pleasure and good fortune to have Hugh Leather and Pavlos

Petoumenos as my advisers for the past four years. They have made my time as a

PhD candidate a deeply gratifying trajectory of learning, curiosity, and occasional hard

work. Thank you.

I would like also to thank Zheng Wang, with whom I have collaborated on projects

which form parts of this thesis. Thank you to Michel Steuwer for providing unapolo-

getically thorough feedback on select chapters of this thesis, improving them markedly.

I would like to thank my friends and colleagues at the University of Edinburgh,

Google, DeepMind, and Codeplay Software whose company I have had the pleasure

of keeping. Finally, I would like to thank my dear Ashleigh, who makes anything and

everything possible. Hello to Jason Isaacs.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material used in this thesis has been published in the following papers:

• Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather “Synthe-

sizing Benchmarks for Predictive Modeling”. In Proceedings of the Interna-

tional Symposium on Code Generation and Optimization (CGO), 2017.

• Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather “End-

to-end Deep Learning of Optimization Heuristics”. In Proceedings of the In-

ternational Conference on Parallel Architectures and Compilation Techniques

(PACT), 2017.

• Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather “Com-

piler Fuzzing through Deep Learning”. In Proceedings of the ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA), 2018.

(Chris Cummins)

v

Table of Contents

1 Introduction 1

1.1 Machine Learning for Compilers . 2

1.2 Challenges in Machine Learning for Compilers 4

1.2.1 Scarcity of Data . 4

1.2.2 Model and Feature Design 4

1.2.3 Adoption of Machine Learning Practices 5

1.3 Contributions . 6

1.4 Publications . 7

1.5 Structure . 7

1.6 Summary . 8

2 Background 9

2.1 Introduction . 9

2.2 Machine Learning . 9

2.2.1 Feed-forward Neural Networks 10

2.2.2 Recurrent Neural Networks 13

2.2.3 Decision Trees . 16

2.3 Model Evaluation Techniques . 16

2.3.1 ZeroR . 17

2.3.2 Training, Validation, Test Data 17

2.3.3 K-Fold Cross-validation . 17

2.3.4 Principal Component Analysis 18

2.4 Summary . 19

3 Related Work 21

3.1 Introduction . 21

3.2 Program Generation . 21

vii

3.2.1 Benchmark Generation for Performance Characterisation . . . 21

3.2.2 Test Case Generation for Compiler Validation 24

3.3 Program Optimisation . 30

3.3.1 Iterative Compilation and Auto-tuning 31

3.3.2 Machine Learning for Compiler Optimisations 35

3.4 Deep Learning over Programs . 39

3.5 Summary . 41

4 Improving the Performance of Predictive Models for Compiler Heuristics 43
4.1 Introduction . 43

4.2 The Case for Generating Benchmarks 46

4.3 CLgen: A System for Generating OpenCL Benchmarks 48

4.3.1 Overview . 50

4.3.2 An OpenCL Language Corpus 50

4.3.3 Learning OpenCL . 55

4.3.4 Synthesising Source Code 55

4.4 CLdrive: A System for Driving Arbitrary OpenCL Kernels 56

4.4.1 Generating Data Payloads 56

4.4.2 Dynamic Checker . 59

4.5 Qualitative Evaluation of Generated Programs 60

4.5.1 Methodology . 60

4.5.2 Experimental Results . 60

4.6 Experimental Methodology . 61

4.6.1 Experimental Setup . 61

4.6.2 Methodology . 63

4.7 Experimental Results . 64

4.7.1 Performance Evaluation . 64

4.7.2 Extending the Predictive Model 64

4.7.3 Comparison of Source Features 68

4.8 Summary . 71

5 Lowering the Cost of Compiler Validation 73
5.1 Introduction . 73

5.2 DeepSmith: Compiler Fuzzing Through Deep Learning 75

5.2.1 Generative Model . 75

5.2.2 Test Harness . 79

viii

5.2.3 Voting Heuristics for Differential Testing 80

5.3 Experimental Setup . 83

5.3.1 OpenCL Systems . 83

5.3.2 Testbeds . 83

5.3.3 Test Cases . 83

5.3.4 Bug Search Time Allowance 83

5.4 Evaluation . 85

5.4.1 Compile-time Defects . 85

5.4.2 Runtime Defects . 92

5.4.3 Comparison to State-of-the-art 93

5.4.4 Compiler Stability Over Time 100

5.4.5 Extensibility of Language Model 101

5.5 Summary . 103

6 Simplifying the Construction of Optimisation Heuristics 105

6.1 Introduction . 105

6.2 DeepTune: Learning On Raw Program Code 108

6.2.1 Overview . 108

6.2.2 Language Model . 108

6.2.3 Auxiliary Inputs . 111

6.2.4 Heuristic Model . 113

6.2.5 Training the Network . 113

6.3 Case Study A: OpenCL Heterogeneous Mapping 114

6.3.1 State-of-the-art . 114

6.3.2 Experimental Setup . 116

6.3.3 Experimental Results . 117

6.4 Case Study B: OpenCL Thread Coarsening Factor 118

6.4.1 State-of-the-art . 118

6.4.2 Experimental Setup . 123

6.4.3 Comparison to Case Study A 124

6.4.4 Experimental Results . 125

6.5 Transfer Learning Across Problem Domains 125

6.6 DeepTune Internal Activation States 128

6.7 Summary . 130

ix

7 Conclusions 133
7.1 Contributions . 133

7.1.1 A Solution for Benchmark Scarcity 133

7.1.2 Low-cost and Effective Compiler Fuzzing 134

7.1.3 Automatic Compiler Optimisation Tuning 135

7.2 Critical Analysis . 136

7.2.1 Generative Models for Source Code 136

7.2.2 Rejection Sampling for Program Generation 137

7.2.3 Characterisation of OpenCL Compiler Bugs 137

7.2.4 Driving arbitrary OpenCL kernels 138

7.2.5 Modelling Program Semantics from Syntactic Sequences . . . 138

7.3 Future Work . 139

7.3.1 Guided Program Synthesis to Minimise Benchmarking Cost . 139

7.3.2 Neural Model Selection through Adversarial Games 140

7.3.3 Learning Representations for Dynamic Program Inputs 140

7.3.4 Towards General-Purpose Program Comprehension 141

7.4 Summary . 141

Bibliography 143

x

List of Figures

2.1 Training and inference in machine learning 10

2.2 Structure of an artificial neural network 11

2.3 Activation functions for artificial neural networks 12

2.4 Recurrent Neural Network architecture 14

2.5 Long Short-Term Memory cell architecture 15

3.1 Generating and evaluating compiler test cases 26

4.1 Training a predictive model for compiler optimisations 44

4.2 Benchmark counts in GPGPU research papers 47

4.3 Identifying and correcting outliers in a benchmark suite 49

4.4 Benchmark synthesis and execution pipeline 51

4.5 Speedup of predictions with and without synthetic benchmarks 65

4.6 Speedups of predictions using extended model over state-of-the-art . . 69

4.7 Number of kernels matching benchmark features 70

5.1 DeepSmith system overview . 76

5.2 Test case execution, and possible results 81

5.3 Example codes which crash parsers 86

5.4 Example OpenCL kernels which crash compilers 87

5.5 Example kernels which hang compilers 89

5.6 Example kernels which are miscompiled 90

5.7 Further example kernels which are miscompiled 91

5.8 Comparison of DeepSmith and CLSmith runtimes 96

5.9 Example kernels which crash Intel compiler passes 98

5.10 Further example kernels which crash Intel compiler passes 99

5.11 Kernels which expose errors exposed by CLSmith and DeepSmith . . 100

5.12 Crash rate of the Clang front-end . 101

xi

6.1 Using machine learning for compiler optimisations 106

6.2 DeepTune system overview . 109

6.3 Deriving a vocabulary encoding from source code 112

6.4 DeepTune artificial neural networks 117

6.5 Accuracy of optimisation heuristics for heterogeneous device mapping 119

6.6 Speedup of predicted heterogeneous mappings 120

6.7 Predicting OpenCL thread coarsening factors. 121

6.8 Speedups of predicted thread coarsening factors on AMD 126

6.9 Speedups of predicted thread coarsening factors on NVIDIA 127

6.10 Visualising the internal state of DeepTune 129

xii

List of Tables

1.1 Development history and costs of popular open-source compilers . . . 2

4.1 Cross-validation of benchmark suites on a predictive model 47

4.2 Grewe, Wang, and O’Boyle features for heterogeneous device mapping 62

4.3 Benchmarks used in evaluation . 62

4.4 Experimental platforms used in evaluation 63

5.1 OpenCL systems and the number of bug reports submitted to date . . 84

5.2 Results from 48 hours of testing using CLSmith 94

5.3 Results from 48 hours of testing using DeepSmith 95

5.4 Number of DeepSmith programs which trigger errors 102

5.5 DeepSmith programs which trigger Solidity compiler errors 102

6.1 Heterogeneous mapping model features 115

6.2 Benchmarks used in Case Study A 116

6.3 Benchmarks used in Case Study A 116

6.4 Magni, Dubach, and O’Boyle features for predicting thread coarsening 122

6.5 Benchmarks used in Case Study B 123

6.6 Experimental platforms used in Case Study B 123

6.7 DeepTune model parameters . 124

xiii

List of Listings

1 The shim header file for compiling OpenCL from GitHub 53

2 Example OpenCL content file from GitHub 54

3 OpenCL content file after rewriting 54

4 Synthesised vector operation with branching and synchronisation . . . 57

5 Synthesised zip operation . 57

6 Synthesised partial reduction operation 58

7 AMD’s Fast Walsh Transform kernel 67

8 Synthesised program with same features as an AMD benchmark . . . 68

xv

Chapter 1

Introduction

There has been an unprecedented increase in the scale and quantity of data-intensive

workloads, with the energy consumption of the ICT industry estimated to rise to 20%

of global output by 2030 [And19]. Fundamental shifts in both hardware and software

are required to meet the demands of the transition to big data [GH15; Has+15].

Compilers play an essential role in extracting software efficiency by transforming

the input code to a set of machine instructions that best utilises the available resources

of the target architecture. Modern compilers are multi-million dollar projects compris-

ing millions of lines of code from hundreds of developers, shown in Table 1.1. Each

architecture supported by a compiler requires extensive hand tuning by experts to ex-

tract good performance. Modern compilers are too complex to be fully understood by

a single developer, yet optimising a single component requires knowledge of the full

compiler and the interaction of its components.

Due to their high cost of development, compilers are unable to adapt to the rapidly

changing hardware landscape arising from GPUs, FPGAs [Con+16; MS10], and

ASICs [Jou+17; MS10]. When compilers are unable to keep up with the pace of

change, this leads to wasted energy, slow performance, and buggy software. For the

trend towards data-intensive workloads and heterogeneous devices to continue, new

techniques are required to reduce the cost of compiler construction. This thesis aims

to address the widening gap between the potential and achieved efficiency of software

by developing new tools to simplify and improve compiler construction.

This thesis demonstrates the use of machine learning for lowering the cost of com-

piler construction. The remainder of this chapter describes the application of machine

learning to compilers, followed by its challenges. Then the contributions of this thesis

are detailed, followed by a description of the overall structure of the document.

1

2 Chapter 1. Introduction

Project Started Developers LOC Estimated Cost

FreePascal 2005 54 3,845,685 $198,619,187

GCC 9.2.0 1988 617 5,591,759 $425,747,278

Glasgow Haskell

Compiler 8.8.1
2001 1,119 761,097 $52,449,098

Intel Graphics

Compiler 1.0.10
2018 149 684,688 $46,934,626

LLVM 8.0.1 2001 1,210 6,887,489 $529,895,190

OpenJDK 14+10 2007 883 7,955,827 $616,517,786

Roslyn .NET 16.2 2014 496 2,705,092 $198,619,187

Rust 1.37.0 2010 2,737 852,877 $59,109,425

Swift 2010 857 665,238 $45,535,689

v8 7.8.112 2008 736 3,048,793 $225,195,832

Table 1.1: Development history, logical lines of code (LOC), and estimated cost of 10

popular open-source compiler projects. Estimated costs are calculated using a CO-

COMO model [Dav01] with average 2019 US software developer salaries [Gla19].

1.1 Machine Learning for Compilers

Machine learning, the study of algorithms and systems capable of learning from data

without being explicitly programmed, has been successfully applied across a broad

range of fields and disciplines. Within compilers, there are many tasks for which ma-

chine learning may prove useful.

A common case where machine learning aids in compiler construction is in the

labour-intensive process of optimisation heuristic construction. For example, suppose

a developer is tasked with tuning the loop unrolling heuristic of a compiler1. There is

a multitude of factors that may influence the decision of whether to unroll a loop such

as the size of the loop body, the number of loop iterations, and the number of registers

required to execute the loop body. Determining which of these factors are most signif-

icant, and on what values the heuristic should differ, is an unwieldy task. The problem

is worsened since the quality of the heuristic depends not just on the program being

compiled, but on properties of the target hardware, such as the number of registers

1Loop unrolling is a code transformation in which the body of a loop is duplicated so that fewer
iterations of the loop must be executed. The idea is to reduce runtime by executing fewer loop control
instructions, at the expense of increasing the size of the executable binary.

1.1. Machine Learning for Compilers 3

and the size of the instruction cache. In the face of these challenges, developing good

heuristics is a huge undertaking, and it is unlikely that a developer will be able to craft

a heuristic capable of extracting the best performance in all situations.

Instead, a developer may cast construction of the loop unrolling heuristic as a ma-

chine learning problem. Rather than expertly crafting a heuristic through intuition and

manual experimentation, the idea is to use a learning algorithm to derive a heuristic

from empirical data of the performance of loops under different configurations of un-

rolling. To do this, the developer profiles suites of benchmark programs repeatedly

using different unrolling decisions to determine the best decision for each case, then

combines this with a numerical representation of each program. A machine learning

system then models the correlations between these numerical program representations

— features — and the unrolling decisions that should be made. Using machine learn-

ing for this task reduces the need for domain expertise compared to the expert-driven

approach, requiring less effort from the developer. Unlike expert-driven approaches,

the system can easily be adapted to new architectures and changes in the compiler

simply by repeating the data collection process and constructing a new model.

The appeal of machine learning is that it provides techniques to automatically un-

derstand the structure of data and how that structure relates to a specific goal. For

unseen data which has similar structures to the training data, this enables accurate pre-

dictions to be made; all without the need for expert domain knowledge. In essence,

machine learning negates the need for problem-domain expertise in cases where there

is a ready supply of empirical observations.

The applicability of machine learning to a wide range of tasks in compiler construc-

tion has led to an established research direction. In previous studies machine learn-

ing has been shown to simplify the construction of compiler optimisations [Ash+18;

WO18], often leading to higher quality heuristics that outperform those constructed

by human experts. With the increasing demand for aggressively-optimising compilers

across a range of heterogeneous hardware, it would appear that machine learning could

provide a much-needed relief on the burden of compiler developers.

Yet, the integration of machine learning and compilers has remained a largely aca-

demic pursuit, with little progress towards adoption by industry. The following section

summarises three key outstanding problems in applying machine learning to compil-

ers.

4 Chapter 1. Introduction

1.2 Challenges in Machine Learning for Compilers

Machine learning techniques offer reduced compiler development costs and improved

runtime performance compared to expert approaches, yet there are three significant

challenges that must be overcome to realise these goals:

1.2.1 Scarcity of Data

In machine learning, a model is trained based on past observations to predict the values

for future inputs. In order to be able to generalise well to unseen observations, plentiful

training data must be provided, with a fine-grained overview of the feature space. In

the case of compilers, training data is derived from benchmark programs, meaning that

many benchmarks are needed to produce sufficient observations for training. Typical

machine learning experiments outside of the compilation field train over thousands

or millions of observations. However, there are typically only a few dozen common

benchmarks available.

The small number of available benchmarks limits the quality of learned models as

they have sparse training data. The problem is worsened by the exponential increase in

feature space size with the addition of new features. Each additional feature makes the

sparsity of training examples more pronounced, increasing the number of observations

required.

To address this issue, there must be a sizeable increase in the availability of bench-

marks for machine learning. Previously, researchers sought to provide this by ran-

domly instantiating from hand-crafted benchmark templates [CGA15], but this is a

challenging approach — the generator must be biased in such a way that the gener-

ated programs draw from a similar distribution to real programs so as to be useful for

learning. It is not clear if such an approach could ever achieve parity with handwritten

programs.

1.2.2 Model and Feature Design

Machine learning algorithms learn to correlate a set of explanatory variables, known

as features, with a target value. Learning the correlation between features and target

value requires that features must be chosen so as to be discriminative for the target

value. Features that are not discriminative will prevent a machine learning system

from being able to achieve the desired task.

1.2. Challenges in Machine Learning for Compilers 5

Choosing a set of features to characterise a program so as to be discriminative

for machine learning depends on the desired task to be learned, the type of model,

and the environment from which training data was collected, e.g. the hardware and

machine configuration. Many problems in compilers do not map directly to numeric

attributes, so systems for extracting numeric representations from non-numeric inputs

must be developed. For example, one might extract instruction counts from the input

source code. Knowing which attributes to extract to represent a program is a hard

problem; there is no one-size-fits-all approach that works for all cases. Further, features

may only be rendered suitable for learning by transforming the initial values, such as

through scaling or normalising. As a result, feature design is often an incremental

process of trial and experimentation, and there are few clear signals when this iterative

process is “done”.

1.2.3 Adoption of Machine Learning Practices

Machine learning systems are fundamentally probabilistic. This stands at odds with es-

tablished compiler construction practice, which uses formal algorithms and systems to

minimise the risk of errors and provide correctness. Given the high cost of developing

compilers (Table 1.1), there is a significant effort and expertise invested in existing ap-

proaches. For the benefits of machine learning techniques for compilers to be realised,

machine learning must provide significant benefits over existing approaches, without

degrading the quality of the compiler.

Techniques must be developed for probabilistic machine learning systems to coex-

ist with formal approaches. One approach is to limit machine learning only to use cases

where correctness guarantees will not be violated, such as in replacing hand-crafted

optimisation heuristics. This mitigates the risk of probabilistic systems introducing

errors, but limits the applicability of the technique to only certain parts of the com-

piler. For other use cases with more stringent requirements for behaviour, for example

when generating inputs to test compilers, techniques must be developed that enable

probabilistic methods to be used without introducing errors or invalid behaviour.

For machine learning techniques to be widely adopted in compilers, they must be

made significantly easier and cheaper to develop. The aim of this thesis is to research

and develop machine learning techniques that simplify and lower the cost of compiler

construction.

6 Chapter 1. Introduction

1.3 Contributions

This thesis presents machine learning-based techniques to simplify and accelerate

compiler construction. The key contributions of this thesis are:

• The first application of deep learning over source codes to synthesise compilable,

executable benchmarks. The proposed approach automatically enhances the pre-

dictive power of a state-of-the-art predictive model, improving the performance

of heterogeneous workloads by 1.27×. Further, the additional benchmarks ex-

pose limitations in the feature design of the model which, after correcting, further

increases performance by 4.30×. This addresses the scarcity of data challenge

(Section 1.2.1) by enabling the generation of an unbounded quantity of training

data for use in machine learning models.

• A novel, automatic, and fast approach for the generation of expressive random

programs for compiler fuzzing. The proposed system infers programming lan-

guage syntax, structure, and semantics from real-world examples, not through an

expert-defined grammar. The system needs two orders of magnitude less code

than the state-of-the-art. In modelling real handwritten code, the test cases are

more interpretable than other approaches; the average test case size is two orders

of magnitude smaller than the state-of-the-art. An extensive testing campaign re-

veals 67 new bugs in commercial and open source OpenCL compilers, exposing

many bugs which prior work cannot, by covering more components of the com-

piler. This addresses the machine learning adoption challenge (Section 1.2.3)

by demonstrating a far simpler method for developing compiler fuzzers, and

proposing fast heuristic techniques that enable probabilistic machine learning

systems in a domain which previously required formal approaches.

• A methodology for building compiler heuristics without the need for program

feature engineering. In an evaluation of the technique it is found to outper-

form existing prior state-of-the-art predictive models by 14% and 12% in two

challenging GPGPU compiler optimisation domains. The proposed approach

enables the first application of transfer learning to compiler optimisations, im-

proving heuristics by reusing training information across different optimisation

problems, even if they are unrelated. This addresses the model and feature design

challenge (Section 1.2.2) by circumventing the need for numeric representations

of code, and enables a single model design to be applied to multiple problems.

1.4. Publications 7

1.4 Publications

This thesis is in part based on ideas and results which have been described in previ-

ous publications. The system for generating benchmarks which provides the basis of

Chapter 4 is described in:

1. Cummins, C., Petoumenos, P., Zang, W., & Leather, H. (2017). Synthesizing

Benchmarks for Predictive Modeling. In CGO. IEEE. [Cum+17b].

Chapter 5 describes an approach to compiler testing which was previously published

in:

2. Cummins, C., Petoumenos, P., Murray, A., & Leather, H. (2018). Compiler

Fuzzing through Deep Learning. In ISSTA. [Cum+17b].

3. Cummins, C., Petoumenos, P., Murray, A., & Leather, H. (2018). DeepSmith:

Compiler Fuzzing through Deep Learning. In ACACES. [Cum+18]

The DeepTune system proposed in Chapter 6 was first published in:

4. Cummins, C., Petoumenos, P., Wang, Z., & Leather, H. (2017). End-to-end Deep

Learning of Optimization Heuristics. In PACT. IEEE. [Cum+17a].

The experimental results in this thesis are reproductions of those in the above pub-

lications. What differentiates this work from prior publications is the addition of back-

ground material (Chapter 2) and a literature review (Chapter 3) which offers a more

comprehensive overview of the relevant fields, and includes references to new works

that have been published after the above publications, including works based on those

publications.

1.5 Structure

This thesis is organised as follows:

Chapter 2 provides background. It defines terminology and describes the machine

learning and evaluation techniques used in this work.

Chapter 3 surveys the relevant literature, divided into three categories: first pro-

gram generation, then program optimisation, finally deep learning for programming

languages.

8 Chapter 1. Introduction

Chapter 4 describes a novel technique for generating an unbounded number of

executable benchmarks to augment the training data of a predictive model. A qual-

itative evaluation of the generated programs is presented, followed by a quantitative

evaluation using a state-of-the-art OpenCL optimisation heuristic.

Chapter 5 extends the generator presented in Chapter 4 to the domain of compiler

validation, presenting a low-cost technique for the inference of compiler fuzzers. Fast

heuristic approaches are presented for false-positive prevention using probabilistic test

case generators. An extensive testing campaign of OpenCL compilers is described,

resulting in 67 bug reports.

Chapter 6 introduces a novel methodology for constructing optimising compiler

heuristics without the need for code features. It presents two case studies of the tech-

nique: the first for learning a heterogeneous device mapping heuristic, the second for

learning OpenCL thread coarsening.

Chapter 7 summarises the overall findings of the thesis, provides a critical review,

and outlines potential avenues for future research.

1.6 Summary

The promise of machine learning techniques is reduced compiler development cost

and improved performance. Achieving these goals requires overcoming three signif-

icant challenges: the data scarcity challenge, the feature design challenge, and the

adoption challenge. The next two chapters discuss technical background knowledge

and related work. Subsequent chapters describe novel techniques which address the

three challenges.

Chapter 2

Background

2.1 Introduction

This chapter provides an overview of the techniques and theory used in this thesis.

Sections 2.2 and 2.3 describe the machine learning and evaluation techniques used in

this thesis, respectively. Section 2.4 concludes.

2.2 Machine Learning

Machine learning is a family of statistical models and algorithms used to infer func-

tions to estimate future values given past observations and their features. Features, or

explanatory variables, are a set of observable attributes used by machine learning algo-

rithms to build the correlations required to predict unseen values, or labels. Figure 2.1

illustrates the process by which a model is fitted to past observations and used to infer

the label of unseen data points. The n-dimensional space described by n features is

known as a feature space. A feature vector is then the set of values describing a single

point in this space.

Machine learning techniques are used in this thesis for classification and sequence

modelling. Classification is the task of predicting the categorical label, or class, for

a set of features, based on labelled training data, i.e. instances whose categories are

known.

Sequence modelling is the task of capturing the underlying probability distribution

describing a sequence of values. This section describes the classification and sequential

modelling techniques used in this thesis.

9

10 Chapter 2. Background

L
a
b
e
l

Feature

(a) Training observations

Feature

L
a
b
e
l

(b) Fitted model

Feature

L
a
b
e
l

(c) Model inference

Figure 2.1: An illustration of the training and inference of a machine learning model.

The x- and y-axes depict features and labels, which may be continuous or discrete

multi-dimensional spaces. In (a), training observations have been collected, consisting

of features and their corresponding labels. A model is then fitted to these observations,

shown as the green curve in (b). The model can then be used to infer the label of

unseen feature values, shown in (c).

2.2.1 Feed-forward Neural Networks

Artificial Neural Networks comprise a network of artificial neurons and weighted con-

nections between them to map input variables to a response. Figure 2.2 shows the

architecture of a feed-forward artificial neural network. Each node represents an artifi-

cial neuron. The neurons are grouped into layers. The signal of an artificial neuron at

a given layer is connected to the input of each artificial neuron in the next layer.

Intermediate layers for which there are no ground truth values are known as hid-

den layers. Figure 2.2 depicts a three-layered network with three input values, a sin-

gle hidden layer with four artificial neurons, and two outputs. Feed-forward multi-

layered artificial neural networks are powerful universal function approximators, capa-

ble of learning any bounded continuous function to arbitrary precision [Hor91; Lu+17;

Yar17].

The signal of an artificial neuron is the activation. For a given layer `, the activa-

tions aaa[`] are a function of the activations of the previous layer aaa[`−1], the connection

weights WWW , biases bbb, and an activation function φ(z):

aaa[`] = φ

(
WWW [`]T aaa[`−1]+bbb[`]

)
(2.1)

The connection weights and biases of an artificial neural network are adjusted dur-

ing training such that, for a pair (xxx,y) where xxx is an input vector of features and y is an

observed label, the difference between the final layer activations and y is minimised.

2.2. Machine Learning 11

Input Hidden Output

Figure 2.2: A feed-forward artificial neural network with a single hidden layer. Each

node in the graph depicts an artificial neuron, and each edge represents the output of

one neuron connected to the input of another.

Activation Function The activation function φ(z) is a non-linear differentiable func-

tion used to calculate the activation of an artificial neuron given a value z ∈ R. A

non-linear function is required to enable the “stacking” of artificial neuron layers to

approximate non-linear functions. Commonly the Sigmoid logistic function is used:

φ(z) =
1

1+ e−z (2.2)

Sigmoid activations are bounded in the range (0,1), depicted in Figure 2.3a. For

hidden layers, a disadvantage of sigmoid activation is that the output is not zero-

centred. To address this, the Hyperbolic Tangent (tanh) activation may be used, which

is a scaled sigmoid function with values in the range (−1,1):

φ(z) =
ez− e−z

ez + e−z (2.3)

Figure 2.3b illustrates the hyperbolic tangent activation. Logistic function-based

activations suffer from a squashing effect with large positive and negative values, and

they are dense activations in which every artificial neuron contributes to the output

value. The Rectified Linear Unit (ReLU) activation function addresses both issues,

with an unbounded range [0,∞):

φ(z) = max(z,0) (2.4)

The ReLU activation is shown in Figure 2.3c. If initialised with random weights

in the range [−1,1], an average of 50% of ReLU activated neurons will not fire, so

12 Chapter 2. Background

(a) Sigmoid (b) Hyperbolic Tangent (c) Rectified Linear Unit

Figure 2.3: Three non-linear functions commonly used to determine the activation of

artificial neurons in an artificial neural network.

that activations are sparse. The Leaky ReLU variation addresses the issue of large

adjustments to parameters during training leading to neurons that are not activated for

any input, effectively “dying”. Leaky ReLU prevents artificial neurons from becoming

unresponsive to variations in input by introducing a small slope for negative values:

φ(z) =

0.01z, if z < 0

z, otherwise
(2.5)

Typically a separate activation function is used for the output layer of an artificial

neural network. For multi-class classification, softmax may be used, which, for K

classes produces a vector:

φ(zzz)(i) =
ezzz(i)

∑
K
j=1 ezzz(i)

, i = 1, . . . ,K (2.6)

Where ∑
K
i=1 φ(zzz)(i) = 1.

Backpropagation and Gradient Descent The most widely used technique to train

artificial neural networks is backpropagation [RHW86]. Typically, the artificial neuron

parameters are initialised with small random values. During training, a mini-batch

of B observations is propagated through the network in a feed-forward stage. The

final outputs of the network ŷyy are then compared against the true values yyy and used to

compute an error L(ŷyy,yyy). The appropriate error function depends on the task. For a

classification task with K classes, categorical cross-entropy may be used:

2.2. Machine Learning 13

L(ŷyy,yyy) =−
K

∑
i=1

yyy(i)log(ŷyy(i)) (2.7)

For each layer `, the average error of the mini-batch J is backpropagated through

the network to update the connection weight WWW [`] and bias parameters bbb[`] based on a

learning rate α:

J =
1
B

B

∑
i=1

L(i)(ŷyy(i),yyy(i)) (2.8)

WWW [`] =WWW [`]−α
∂J

∂WWW [`]
(2.9)

bbb[`] = bbb[`]−α
∂J

∂bbb[`]
(2.10)

Regularisation Techniques Neural networks are vulnerable to over-fitting, whereby

the parameters of the model become specialised to the training observations, losing the

ability to generalise to unseen data. Many regularisation techniques have been adopted

to mitigate the risk of over-fitting.

Dropout is a regularisation technique in which a parameter in the range [0,1] is

used to determine a proportion of artificial neurons to be removed. This helps training

by preventing complex co-adaptations on training values [GBC16].

2.2.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN) [Gra12] is an artificial neural network in which

the connections between artificial neurons form a cycle, enabling the processing of

arbitrary size sequences by maintaining and updating a hidden state. RNNs are a

deep learning architecture, where deep learning is a loosely defined class of machine

learning methods built on artificial neural networks1. Figure 2.4 depicts an RNN,

where xxx(t) ∈Rd represents point t ∈ τ in a sequence of inputs xxx =
(

xxx(1), . . . ,xxx(τ)
)

. The

hidden states hhh(t) ∈ Rh and predicted output ŷyy(t) ∈ Ry are updated at each step using:

hhh(t) = φ

(
UUUxxx(t)+WWWhhh(t−1)+bbbh

)
(2.11)

ŷyy(t) = σ

(
VVV hhh(t)+bbbŷ

)
(2.12)

1Deep learning is distinct from deep neural networks, which are a specific deep learning architecture
employing artificial neural networks with one or more hidden layers.

14 Chapter 2. Background

①
✭t✮

✦
✭t✮

❤
✭t✮

❯

❲

❱

(a)

①✭�✁

✦✭�✁

❤✭�✁

❯

❲

❱

①✭✶✁

✦✭✂✁

❤✭✂✁

❯

❱

❲

①✭t✁

✦✭✄✁

❤✭t✁

❯

❱

➱

(b)

Figure 2.4: The computational graph of a Recurrent Neural Network, shown in (a) as a

recurrence relation, and unfolded in (b). xxx(t) is the input, hhh(t) is the hidden state, and

ŷyy(t) is the output. The network is parameterised through three weight matrices: inputs-

to-hidden weights UUU , hidden-to-hidden weights WWW , and hidden-to-output weights VVV . As

can be seen, the parameters are shared across all points in the time series.

Where φ(zzz) and σ(zzz) are non-linear activation functions, bbbh and bbbŷ are bias vectors,

and WWW ∈ Rh×d , UUU ∈ Rh×h, and VVV ∈ Ry×h are matrices representing the hidden-to-

hidden, input-to-hidden, and hidden-to-output weights respectively.

The recurrent structure of RNNs enables the modelling of patterns in data with a

temporal domain, such as text or numerical time series. Whereas a feed-forward arti-

ficial neural network estimates a conditional distribution based on an instantaneous

input p(y|xxx), an RNN estimates a distribution conditioned on t prior observations

p
(

y(t)|{xxx(1), . . . ,xxx(t)}
)

.

Ordinary backpropagation may be used on an RNN by unfolding the computation

graph over time, shown in Figure 2.4b. This backpropagation through time [Wer90]

enables the propagation of errors in the temporal domain in the same manner as through

layers.

RNNs are universal, in that any function computable by a Turing machine can be

computed by an RNN of finite size [SS91]. In practice, a significant obstacle to the per-

formance of RNNs is the diminishing ability to learn connections between values over

long sequences. This is caused by the exponential diminishing and enlarging of gradi-

ents as they are propagated through non-linear activation functions by the recurrence

relation. This issue is known as the vanishing gradients problem [BSF94].

2.2. Machine Learning 15

❝✭t�✁✮

❤✭t�✁✮

❝✭t✮

❤✭t✮

❢ ✭t✮

✦ ✦ ✂✄☎✆ ✦

✂✄☎✆

①✭t✮

✐ ✭t✮

♦ ✭t✮

Figure 2.5: A Long Short-Term Memory cell block. Input xxx(t) is concatenated with

prior hidden state hhh(t−1) and used along with prior cell state ccc(t−1) to compute a new

hidden state hhh(t) and cell state ccc(t). Symbols ⊗ denotes element-wise vector product,

⊕ element-wise vector addition, and � vector concatenation.

Long Short-Term Memory Long short-term memory (LSTM) [HS97] is an RNN

architecture designed to overcome the vanishing gradients problem. The LSTM aug-

ments RNN design with the addition of a cell for storing information, and three gates

which control the flow of information into and out of the cell.

Figure 2.5 depicts the structure of an LSTM cell. In addition to the recurrent con-

nections for hidden states, a cell state vector ccc(t) ∈Rh is propagated through time. The

signal flow through the cell is controlled by three sigmoid activated gates: the forget

gate fff (t) ∈ Rh, input gate iii(t) ∈ Rh, and output gate ooo(t) ∈ Rh. At each time step, the

values of the gate vectors are updated using:

fff (t) = σ

(
WWW f xxx(t)+UUU f hhh(t−1)+bbb f

)
(2.13)

iii(t) = σ

(
WWW ixxx(t)+UUU ihhh(t−1)+bbbi

)
(2.14)

ooo(t) = σ

(
WWW oxxx(t)+UUUohhh(t−1)+bbbo

)
(2.15)

(2.16)

Where weight matrices WWW ∈Rh×d and UUU ∈Rh×h, and bias vectors bbb ∈Rh are sub-

scripted for the activation being calculated: f forget gate, i input gate, or o output gate.

The cell state and hidden state are then updated using:

16 Chapter 2. Background

ccc(t) = fff (t)⊗ ccc(t−1)+ i(t)⊗ tanh
(

WWW cxxx(t)+UUUchhh(t−1)+bbbc

)
(2.17)

hhh(t) = ooo(t)⊗ tanh(ccc(t)) (2.18)

Where ⊗ denotes element-wise vector product, and subscript c denotes cell state

weight matrices and bias vectors. The gated cell enables LSTMs to build connections

over long sequences in data. The LSTM architecture (and its many variants [Gre+15a])

have been responsible for breakthrough results in a number of areas, for example ma-

chine translation [SVL14], speech recognition [GS05], and weather prediction [Shi+15].

2.2.3 Decision Trees

Decision trees are an intuitive form of classifier whereby a tree structure of decision

nodes are used to predict the class for a given set of features. Decision trees are built

using binary recursive partitioning: by creating an axis-parallel decision node for the

feature which provides the highest gain, creating new child nodes for each possible

outcome, splitting the data amongst these child nodes, and continuing recursively. The

gain of a feature is found by first computing the entropy of the data set. Given a set

of data points D where p(+) is the number of positive examples in D and p(−) is the

number of negative examples in D:

H(D) =−p(+) log2 p(+)− p(−) log2 p(−) (2.19)

The gain of a feature x is found using:

Gain(D,x) = H(D)− ∑
V∈Values(x)

|DV |
|D|

H(DV) (2.20)

Decision trees are a popular and low overhead form of classification. Once trained,

a decision tree can be implemented as a set of nested conditional statements. This

makes the learned model easily interpretable, simplifying debugging.

2.3 Model Evaluation Techniques

This section describes the techniques used to evaluate the machine learning methods

described in the previous section.

2.3. Model Evaluation Techniques 17

2.3.1 ZeroR

A ZeroR model is used in classification tasks to provide a baseline to evaluate the

performance of classifiers. A ZeroR model represents the simplest approach to clas-

sification, its output is the mode of the training data labels, irrespective of the input.

For example, given training data with the labels yyy = {A,B,B,C}, a ZeroR model will

produce output ŷyy = B for all future inputs. A ZeroR model has no power of prediction

since its output is not conditioned on input features.

2.3.2 Training, Validation, Test Data

The data used to train a machine learning model must not be used to evaluate it. To

evaluate a machine learning model, data must be divided into disjoint training and test-

ing partitions. For a set of N pairs of input and output observations DDD = (xxx(i),yyy(i)), i =

1, . . . ,N, let k : 1, . . . ,N→ 1, . . . ,K be an indexing function that indicates the partition

to which the observation i ∈ N is allocated by the randomisation. The model is then

trained with the kth part of the data removed, yielding fitted function f̂−k(xxx). The qual-

ity of the model V (f̂−k) is then evaluated using the loss between the expected values

and predicted values in the unseen test set:

yyyk = {yyy(i) ∈ yyy|i ∈ k(yyy)} (2.21)

V (f̂−k) = L(yyyk, f̂−k(xxxk)) (2.22)

Employing a second indexing function u to further divide the data 6∈ k into disjoint

training and test sets creates a validation set. A validation set can be used to auto-

matically tune model parameters. Given a model fp parameterised by p, the quality

of the model evaluating using the parameters p̄ that provide the smallest loss on the

validation set can be found from a set of parameters P using:

p̄ = argmin
p

L(yyyu, f̂−(k∪u)
p (xxxu)), p∀P (2.23)

V (f̂−k
p̄) = L(yyyk, f̂−(k∪u)

p̄ (xxxk)) (2.24)

2.3.3 K-Fold Cross-validation

Dividing the dataset into fixed training and test sets is problematic if it results in the

test set being small. A small test set implies statistical uncertainty around the estimated

18 Chapter 2. Background

average test error, making it difficult to compare models.

Ideally, sufficient data would exist to be set aside for testing. When not practically

possible, cross-validation may be used. Cross-validations enables the use of all obser-

vations in a data set in the estimation of the mean test error, at the expense of increased

computational cost through repeated evaluations.

K-Fold cross-validation sets aside part of the available data to fit the model, and a

different part to test it. Data is split into K roughly equal-sized parts.

CV (f̂) =
1
K

K

∑
i=1

L(yyy(i), f̂−K(i)
(xxx(i))) (2.25)

Where for a set of n observations, K ≤ n. If K = n this is known as leave-one-out

cross-validation.

For a classification task, if observations are distributed amongst the K partitions

such that the distribution of observed classes in all partitions is equal, this is called

stratified K-fold cross-validation.

2.3.4 Principal Component Analysis

Principal Components Analysis PCA [Jol11] is a statistical procedure for identifying

the underlying components responsible for variance in data. Given n dimensions of

observations, PCA produces a k-dimensional subspace through a linear transforma-

tion, where k < n. Each component is ordered by decreasing variance, Var(k(i)) ≤
Var(k(i−1)). This dimensionality-reduction is useful for exposing underlying corre-

lations in machine learning feature design, and to aid in visually inspecting high-

dimensional spaces where n≥ 3.

To compute the principal components, one begins with a normalised matrix of ob-

servations XXX ∈ Rm×n of m rows and n columns (components). The data is normalised

to the range [−1,1] by subtracting the mean and scaling each component by its vari-

ance. Given eigenvectors vvv(1), . . .vvv(m), the matrix of k principal components X̂XX ∈Rm×k

can be computed using:

X̂XX = [vvv(1), . . . ,vvv(k)]T ·XXX (2.26)

2.4. Summary 19

2.4 Summary

This chapter provides background on the machine learning techniques used in this

thesis to develop low cost techniques for compiler construction, and the techniques

used in evaluating their effectiveness. The following chapter surveys research literature

relevant to this work.

Chapter 3

Related Work

3.1 Introduction

This chapter surveys the literature in areas relevant to this thesis. Section 3.2 reviews

research in program generation, focusing first on generating benchmarks for perfor-

mance characterisation, then compiler test case generation. Section 3.3 reviews the

literature of empirical program optimisation, covering iterative compilation and ma-

chine learning. Section 3.4 surveys the literature of related works in deep learning

over programs. Finally Section 3.5 concludes.

3.2 Program Generation

In this thesis, program generation is used as a mechanism to simplify the development

of compiler heuristics and to validate the behaviour of compilers. The generation of

artificial programs is a broad field with a wide range of applications; this section cate-

gorises the literature in the two areas that are relevant to this thesis: program generation

for performance characterisation, and program generation for compiler validation.

3.2.1 Benchmark Generation for Performance Characterisation

Benchmark suites serve a wide variety of uses from compiler optimisations to hardware

design. The challenge in creating a benchmark suite is to capture a diverse set of

workloads that is both representative of real-world usage while providing adequate

coverage of the program space. Achieving either of these two goals is a challenging

task, and efforts towards one goal may hamper the other. As such, there is no “one size

21

22 Chapter 3. Related Work

fits all” approach to assembling benchmark suites.

Given its importance, benchmark suite characterisation has been the subject of

much research. An evaluation of popular GPGPU benchmark suites [Ryo+15] reveals

there are important parts of the program space left untested. Xiong et al. [Xio+13]

demonstrate that workload behaviour is highly input dependent, and argue that bench-

marks created for academic research cannot represent the cases of real-world applica-

tions. A review of big data benchmarks [Fer+12] found many to be unrepresentative,

and that current hardware designs, while optimised for existing benchmark suites, are

inefficient for true workloads.

Benchmark suites should be diverse, with each benchmark within a suite occu-

pying a distinct point in the program space, else the benchmark may be redundant.

Ould-Ahmed-Vall et al. [Oul+08] show that statistical models trained on 10% of SPEC

CPU 2006 data are transferable to the remaining data. Goswami et al. [Gos+10] eval-

uate the diversity of 38 GPGPU benchmark workloads, finding that Similarity Score,

Scan of Large Arrays, and Parallel Reduction benchmarks show significantly different

behaviour due to their large number of diverse kernels, but the remaining 35 bench-

marks provide similar characteristics. Phansalkar, Joshi, and John [PJJ07] show that

a subset of 14 SPEC CPU 2006 programs yields most of the information of the entire

suite, and Panda et al. [Pan+18] find that SPEC CPU 2017 contains workloads that,

when removed, do not degrade the suite’s coverage of the program space.

Researchers have turned to synthetic benchmarks to address the coverage and di-

versity challenges. The use of synthetic benchmarks is not new, with an early example

from 1976 using a synthetic benchmark to compare the computing power of processors

for scientific workloads [CW76]. Bell and John [BJ05] pose the synthesis of synthetic

benchmarks as a test case generation problem, using hardware counters to validate the

similarity of synthesised benchmarks to a target workload.

A popular use of synthetic benchmark generation techniques is to aid micropro-

cessor design. Joshi et al. [Jos+08] use micro-architecture-independent characteristics

such as basic block sizes and data footprint to summarise workloads. Their benchmark

generator, BenchMaker, then generates a linear sequence of basic blocks and randomly

populates them with assembly instructions to match the desired workload character-

istics. MicroProbe [Ber+12] uses feedback-directed micro-benchmark generation to

perform a systematic energy characterisation of a processor.

GENESIS [CGA15] is a language for generating synthetic training programs. The

essence of the approach is to construct a probabilistic grammar with embedded seman-

3.2. Program Generation 23

tic actions that define a language of possible programs. New programs may be created

by sampling the grammar and, through setting probabilities on the grammar produc-

tions, the sampling is biased towards producing programs from one part of the space

or another. Theoretically, this technique is completely general since a grammar may

be constructed to match any desired program domain. However, despite being theoret-

ically possible, it is not easy in practice to construct grammars which are both suitably

general and also produce programs that are in any way similar to what humans write.

Such grammar-based benchmark generators have been shown to be successful only

over a highly restricted space of stencil benchmarks with little control flow or program

variability [Cum+16a; FE15; GA15]. Restricting the domain of programs that can be

generated limits the usefulness of this approach for many problems. It remains un-

clear how much effort it would take to define grammars capable of producing realistic

programs in more complex domains.

Interesting recent developments in synthetic benchmark generation have combined

elements from feedback-directed test case synthesis (reviewed in the next section) with

synthetic benchmarking for the purpose of generating adversarial benchmarks that

expose performance issues in systems.

Dhok and Ramanathan [DR16] apply mutation techniques to an initial set of

coverage-driven inputs to expose inefficiencies in loops. SlowFuzz [Pet+17] uses

resource-usage to guide evolutionary search over program inputs to expose perfor-

mance bottlenecks that could be exploited by attackers to produce Denial-of-Service

attacks. It considers the input to a program as a byte sequence and performs mutations

to find the byte sequence within a fixed input size that maximises slowdown. Similarly,

Singularity [Wei+18] uses an evolutionary search over the space of program inputs but

using input patterns to find the input with the worst case performance.

PerfSyn [TPG18] tackles the related problem of exposing performance bottlenecks

from API usage. For a method under test, it starts with a minimal example input and

applies a sequence of mutations that modify the original code. PerfFuzz [Lem+18] uses

feedback-directed program mutation to generate programs which maximise execution

counts at program locations. Pedrosa et al. [Ped+18] applies this adversarial bench-

mark approach to network functions. Their tool, CASTAN, takes as input the code for

a network function and outputs packet sequences that trigger slow execution paths.

Ding, Mishra, and Hofmann [DMH19] propose an alternative approach to address-

ing data scarcity in machine learning. Instead of generating benchmarks whose fea-

tures must be evaluated and labelled to derive training data, they instead generate new

24 Chapter 3. Related Work

feature values and labels based on the distributions in the training set. In contrast to the

methods proposed in this work, their dataset generator — based on a Gaussian Mixture

Model — is explicitly designed to amplify unusual behaviour within the training set.

The generative model proposed in this work is intended to produce new data that is

representative of the training set.

In contrast to prior works, the benchmark generation technique proposed in this

thesis provides general-purpose program generation over unknown domains, in which

the statistical distribution of generated programs is automatically inferred from a cor-

pus of real-world code. This allows representative benchmarks to be generated auto-

matically without expert guidance. To the best of my knowledge, no prior work has

tackled the problem of undirected benchmark generation from example code.

3.2.2 Test Case Generation for Compiler Validation

Compilers are a fundamental trusted technology, and their correctness is critical. Er-

rors in compilers introduce security vulnerabilities and catastrophic runtime failures.

Therefore, ensuring that a compiler behaves as expected is of utmost importance.

Approaches to assure compiler behaviour are divided into verification and valida-

tion. The complexity of optimising compilers and the programming languages they

compile renders formal verification of the entire compiler prohibitively expensive. Ef-

forts have been made in this direction, for example, CompCert [Ler17], a formally ver-

ified compiler for the C programming language, but this comes at the cost of supporting

only a subset of the language features and with significantly lower performance com-

pared to unverified compilers such as GCC [Daniel2017]. Still, even CompCert is not

fully verified, and errors have been discovered in the unverified components [Yan+11].

Because of the difficulties of verification, compiler developers turn to validation,

in which the behaviour of a compiler is validated using a set of hand crafted input

programs, or test cases. For each test case, the expected outcome (determined by the

specification of the compiler) is compared against the observed outcome to validate

that the compiler conforms to the specification, for those inputs. However, the absence

of errors during the validation process does not prove that the compiler is free from

errors unless all possible inputs are tested exhaustively, and the input space for com-

pilers is huge1. As such, hand-designed suites of test programs, while important, are

1In theory, the input space of a compiler is infinite. In practice, however, constraints such as maxi-
mum input file size bound the space, though these bounds far exceed what is computationally tractable
with current technology.

3.2. Program Generation 25

inadequate for covering such a large space and will not touch all parts of the compiler.

The random generation of programs to test compilers is a well-established ap-

proach to the compiler validation problem. The main question of interest is in how

to efficiently generate programs which expose bugs. There are two complementary

approaches: program generation, where inputs are synthesised from scratch; and pro-

gram mutation, where existing inputs are modified so as to identify anomalous be-

haviour. This section reviews each approach in turn.

3.2.2.1 Program Generation for Compiler Testing

The idea of generating programs to test compilers is well-established. The majority of

test case generation approaches are based on a formal specification of the programming

language syntax and grammar. An early approach is presented by Hanford [Han70],

which randomly enumerates programs described by a context-free grammar to produce

an inexhaustible supply of new programs. While the generated programs are syntacti-

cally valid, they are meaningless, and many cannot be executed. This limits their value

only to testing the compiler front end.

Deeper testing of compiler components is enabled by extending test case generators

to produce both a syntactically correct program and a corresponding gold standard out-

put that would be produced by a conformant compiler. The compiled program is then

executed and its output compared against this gold standard. Figure 3.1a shows the pro-

cess. Gold standard-based approaches are surveyed by Boujarwah and Saleh [BS97]

and Kossatchev and Posypkin [KP05]. The challenge of the approach is in generating

the corresponding gold standard output for each program.

Differential testing, illustrated in Figure 3.1b, accelerates testing by enabling many

compilers to be tested at once. In differential testing, a single program is fed through

multiple compilers to produce corresponding executables. Each of these executables

are run and their outputs recorded. Since the executables were compiled from the

same input program, if any of the outputs differ, a bug in one of the compilers has been

exposed. The advantage of differential testing over prior approaches is that it does not

require a gold standard for the expected behaviour of a conformant compiler. As such,

any well-formed program may be used as a test. Even malformed inputs may be used

to identify anomalies in the error handling logic of compilers. While lacking a gold

standard for behaviour makes differential testing theoretically insufficient to prove that

a compiler with a minority output is at fault, in practice the likelihood of the majority

consensus being incorrect is extremely unlikely, and I have not been able to find any

26 Chapter 3. Related Work

(a) Expected outcome-based test case generation and evaluation

(b) Differential test case generation and evaluation

Figure 3.1: Two approaches to addressing the compiler validation problem through test

case generation. In (a), a test case is composed of a program and a summary of its

expected behaviour. In (b), only a program is required, and the expected outcome is

determined by majority voting on the observed outcomes across multiple compilers.

3.2. Program Generation 27

work in the literature that reports such issues.

Differential testing has been applied across different compilers [Che+16b; Lid+15]

and using the same compiler with different configurations [Kyl+15; Pał+11] (and com-

binations of the two). Chen et al. [Che+16a] empirically contrasts the two approaches,

along with a comparison to Equivalence Modulo Inputs testing (described in the fol-

lowing subsection).

In the foundational work on differential testing for compilers, McKeeman [McK98]

presents generators capable of enumerating programs of a range of qualities, from

random ASCII sequences to C model conforming programs. Subsequent works have

presented increasingly complex generators which improve in some metric of interest,

generally expressiveness or probability of correctness.

CSmith [Yan+11] is a widely known and effective generator which enumerates pro-

grams by pairing infrequently combined language features. In doing so, it produces

correct programs with clearly defined behaviour but extremely unlikely functionality,

increasing the chances of triggering a bug. Achieving this required extensive engi-

neering work, most of it not portable across languages, and ignoring some language

features. Lidbury et al. [Lid+15] extend CSmith to the OpenCL programming lan-

guage, a superficially simple task, yet this required 9 man-months of development and

8000 lines of code. Subsequent generators influenced by CSmith focus on compiler

features and bug types beyond the scope of CSmith, such as Orange3 [NHI13] which

targets arithmetic bugs.

Similar to program generation for testing compilers, prior work has focused on

input generation for testing programs [CDP15; DJW12; Fet+15; GKS05; RNL08].

Glade [Bas+17] derives a context-free grammar for structured program inputs from

a corpus of examples. The derived grammar is enumerated to produce new inputs,

though no distribution is learned over the grammar; enumeration is uniformly random.

Programs generated by grammar-based approaches are often unlike real handwrit-

ten code, and are typically large. As such, once a bug has been identified, test case

reduction [Reg+12] is required to minimise the size of the program and isolate the

code of interest. Automated test case reduction does not scale to the rate at which

effective compiler fuzzers produce programs of interest, often taking minutes or hours

for each test case [PDL16].

Entirely machine learning-based approaches to program generation have recently

been proposed. They are reviewed in Section 3.2.2.3.

28 Chapter 3. Related Work

3.2.2.2 Program Mutation and Feedback-directed Compiler Testing

An alternative method for generating programs to use as compiler test cases is to mu-

tate a seed input. Equivalence Modulo Inputs (EMI) testing, introduced by Le, Afshari,

and Su [LAS14], starts with an existing program and inserts or deletes statements that

will not be executed so that the functionality of the code is unchanged. If the function-

ality of the compiled code is affected, it is due to a bug in the compiler. In the original

work [LAS14], code from dead regions is randomly deleted. Athena [LSS15a] guides

the approach using a Markov Chain Monte Carlo method, and supports dead code

insertion as well as removal. Proteus [LSS15b] applies the EMI technique to test link-

time optimisers. Hermes [SLS16] extends EMI to permit the mutation of live code

regions, not just dead code. This greatly increases the expressiveness of the generated

programs.

LangFuzz [HHZ12] also uses program mutation but does this by inserting code

segments which have previously exposed bugs. This increases the chances of discov-

ering vulnerabilities in scripting language engines. Starting with a coverage-guided

set of inputs, T-Fuzz [PSP18] uses dynamic tracing to detect input checks in pro-

grams and selectively removes them to expose defects. Skeletal program enumera-

tion [ZSS17] again works by transforming existing code. It identifies algorithmic pat-

terns in short pieces of code and enumerates all the possible permutations of variable

usage. pFuzzer [Mat+19] targets input parsers, using dynamic tainting to produce a set

of legal inputs that cover all conditions during parsing. Coverage-directed mutation

techniques have been used for differential testing the Java Virtual Machine [Che+16b].

Machine learning has been used to guide test case mutation. Cheng et al. [Che+19b]

construct artificial neural networks to discover correlations between PDF test cases and

their execution in the target program. The correlations are then leveraged to generate

new paths in the target program. NEUZZ [She+18] learns a differentiable neural ap-

proximation of target program logic, then uses Stochastic Gradient Descent to guide

program mutation. Skyfire [Wan+17] learns a probabilistic context-sensitive grammar

over a corpus of programs to generate input seeds for mutation testing. The generated

seeds are shown to improve the code coverage of AFL [Zal14] when fuzzing XSLT

and XML engines. The seeds are not directly used as test cases.

EMI and feedback-directed approaches rely on having a large number of seed pro-

grams to mutate. As such, they may still require an external code generator. Similarly

to grammar-based approaches, these methods often tend to favour large test programs.

3.2. Program Generation 29

3.2.2.3 Neural Program Generation

Recently, machine learning methods have been proposed for generating test cases.

These differ from prior works that use machine learning to guide the generation of

test cases. Methods have been proposed based on the success of Recurrent Neural

Networks (RNNs) at modelling sequential data [Joz+16]. RNNs have been success-

fully applied to a broad range of generative tasks in other domains, including im-

age captioning [Vin+15], colourising black and white photographs [ZIE16], artistic

style [GEB15], and image generation [Gre+15b].

The proficiency of RNNs for sequence modelling is well demonstrated [SVL14].

Sutskever, Vinyals, and Le apply two RNN networks to translate first a sequence into a

fixed length vector, then to decode the vector into an output sequence. This architecture

achieves state-of-the-art performance in machine translation. The authors find that

reversing the order of the input sequences markedly improves translation performance

by introducing new short term dependencies between input and output sequences.

Although nascent, the use of artificial neural networks to generate programs is

evolving rapidly. Neural Programmer [NLS16] is an early example of program gener-

ation through the latent representation of an artificial neural network.

Learn&Fuzz [GPS17] and IUST DeepFuzz [NPK18] use LSTM networks, trained

on a corpus of PDF files, to generate test inputs for PDF renderers. In the case of

Learn&Fuzz, they uncover a bug in the Microsoft Edge renderer. Unlike compiler

testing, PDF test cases require no inputs and no pre-processing of the training corpus.

Jitsunari and Arahori [JA19] incorporate coverage directed feedback during the

training of generative models for PDFs. They train a model on an initial corpus, then

sample it. They then evaluate the samples using code coverage and select those that

provide the best coverage to be used as additional training data to fine-tune the model.

Doing so improves the code coverage of the final generative model.

Most similar to the work presented in this thesis is DeepFuzz [Liu+19], in which an

LSTM network is used to generate fragments of C programs that are inserted into GCC

unit tests. The mutated unit tests are then used for differential testing. They propose a

character-level model with three sampling methodologies: one where a sample is made

for every character, one where no sampling is made (so the generated fragment is con-

ditioned solely on the sample prefix), and a hybrid approach in which sampling occurs

only on white-space. In their evaluation, they uncover 8 bugs in GCC, and achieve

up to an 82.63% rate of syntactically valid samples. The work presented in this thesis

30 Chapter 3. Related Work

differs in several ways. The key difference is the use of a recurrent neural network

to generate only fragments of a program, derived from an existing GCC unit test. In

contrast, the approach presented in this thesis generates entire programs. Further, the

approach presented in this thesis is trained on a wide range of handwritten programs

with the intent of emulating natural programming styles.

Kosta, Seaman, and Xi [KSX19] generate C functions to augment the training

dataset of machine learning for static analysis, using vulnerability injection to produce

positive examples. They generate programs using a Grammar Variational Autoencoder,

an artificial neural network architecture which decomposes a program to a sequence of

context-free grammar production rules. Unlike the syntactic-level approach presented

in this work, this grammar-based approach guarantees the generation of syntactically

correct code by masking production rules that would lead to invalid programs. The au-

thors combine this with semantic repair to further reduce the chance of a sample being

invalid.

A drawback of Grammar Variational Autoencoder approaches is the explosion in

vocabulary size arising from using a context-free grammar to model a programming

language. To mitigate this, the authors must limit the expressiveness of the generator

by using only a small subset of the programming language’s features. Kosta, Seaman,

and Xi achieve this by selecting a handful of C functions to derive a grammar from,

followed by further manual pruning of the derived grammar based on what the authors

felt would be used most often by programmers. It is unclear whether such an approach

could be extended to match the expressiveness of the method presented in this work.

Neural program generation has been used for purposes other than compiler testing,

reviewed in Section 3.4.

3.3 Program Optimisation

Modern compilers are complex, typically containing dozens or hundreds of indepen-

dent optimisation passes. Determining which optimisation passes to apply, and in what

order, is a challenge that depends on a variety of factors from the properties of the pro-

gram being compiled to the target hardware. Current state-of-practice is for compilers

to use a fixed ordering of optimisations, and for each optimisation to contain heuristics

to determine when the optimisation is applied, and with what parameters. Such heuris-

tics require expert design at the expense of great effort and manual tweaking. Still,

they rarely are capable of extracting all of the available performance.

3.3. Program Optimisation 31

Extracting the maximum performance of a program is not simply a case of enabling

more optimisations, but in identifying which, out of a set of candidate optimisations,

will provide the best performance for the current case. A recent study by Georgiou

et al. [Geo+18] illustrates the scale of the challenge. Using two modern releases of

the industry-standard LLVM compiler, they obtain an average 3.9% performance im-

provement across 71 benchmarks on embedded processors by selectively disabling

optimisations enabled at the standard -O2 optimisation level.

Selecting the right optimisations is critical. In some domains, the margin of perfor-

mance to be gained is significant. For example, Ryoo et al. [Ryo+08a] find speedups

of up to 432× through the appropriate selection and use of tiling and loop unrolling

optimisations on a GPU matrix multiplication implementation.

Given the challenges of heuristic and analytical methods for extracting perfor-

mance, researchers have turned to empirical methods such as iterative compilation.

3.3.1 Iterative Compilation and Auto-tuning

Iterative compilation is a method of performance tuning in which a program is com-

piled and profiled using multiple optimisation configurations to find the configuration

which provides the best performance. Unlike analytical methods which attempt to

predict the parameters that produce good performance, iterative compilation is em-

pirical. A set of candidate configurations are selected, and for each, the program is

compiled and profiled. The configuration that minimises the value of a suitable cost

function (such as program runtime) is selected. Pioneered by Bodin et al. [Bod+98],

the technique was initially demonstrated to find good configurations in the non-linear

three-dimensional optimisation space of a matrix multiplication benchmark. By ex-

haustively enumerating the optimisation space they were able to find the global minima

of the cost function; however, the authors state that in practice this may not be possible.

In cases where an exhaustive enumeration of the optimisation space is infeasible, the

process may be cast as a search problem.

While conceptually simple, the empirical nature of iterative compilation yields

good results. Iterative compilation has since been demonstrated to be a highly ef-

fective form of empirical performance tuning for selecting compiler optimisations. In

a large scale evaluation across 1000 data sets, Chen et al. [Che+10] found iterative

compilation to yield speedups in GCC over the highest optimisation level (-O3) of up

2.23×.

32 Chapter 3. Related Work

The greatest challenge of iterative compilation is the exponential blow-up of op-

timisation space size with the addition of independent optimisations. The hundreds

of discrete optimising transformations found in modern compilers render an exhaus-

tive search of the optimisation space infeasible. This has driven the development of

methods for reducing the cost of evaluating configurations. These methods reduce

evaluation costs either by pruning the size of the optimisation space and performing

a random or exhaustive enumeration or by guiding a directed search to traverse the

optimisation space while evaluating fewer points.

3.3.1.1 Pruning the Iterative Compilation Search Space

Triantafyllis and August [TA03] propose using feedback during the evaluation of con-

figurations to prune the optimisation space. This is combined with a static perfor-

mance estimator to obviate the need to run each configuration of a program. Pan and

Eigenmann [PE06] formalise the iterative compilation problem as: given a set of com-

piler optimisation options, find the combination that minimises the program execution

time efficiently, without a priori knowledge of the optimisations and their interactions.

Their technique, Combined Elimination, iteratively prunes the search space, reducing

the tuning time to 57% of the closest alternative. Posing the problem as a subset search

negates the challenge of optimisation ordering, though this challenge has been the fo-

cus of other work [KC12; PJ13].

Ryoo et al. [Ryo+08b] prune the optimisation space for GPGPU workloads using

the common subset of optimal configurations across a set of training examples. This

technique reduces the search space by 98%. The trade-off of this approach is that

there is no guarantee that for a new program, the reduced search space will include

the optimal configuration. Similarly, Purini and Jain [PJ13] identify a set of good

optimisation sequences offline that is small enough for each new program to be tried

with all sequences in the set. They find that a sequence set size of 10 yields 13%

speedups on PolyBench and MiBench programs. Although this does not reduce the

cost of finding the set of good sequences, the process need only be performed once per

platform, so the cost may be amortised by reusing the same sequence set.

Frameworks for iterative compilation offer mechanisms to abstract the iterative

compilation process from the optimisation space. These lower the cost of adopting

iterative compilation techniques by providing reusable logic to search optimisation

spaces. Examples include OpenTuner [Ans+13] which provides domain-agnostic en-

semble search techniques and CLTune [NC15] for iterative compilation in OpenCL.

3.3. Program Optimisation 33

A complementary approach to search space pruning is knowledge sharing. The

idea is that, since software has many users, knowledge of the optimisation space can

be shared between users rather than having each redundantly perform their own ex-

ploration of the optimisation space from scratch. Such “big data” approaches to auto-

tuning have been variously proposed as Collective Optimization [FT10], Crowdtun-

ing [MF13], and Collective Mind [Fur+14]. Fursin et al. argue that the challenges

facing widespread adoption of iterative compilation techniques are attributable to: a

lack of common, diverse benchmarks and data sets; a lack of common experimen-

tal methodologies; problems with continuously changing hardware and software; and

the difficulty in validating techniques due to a lack of sharing in publications. They

propose systems for addressing these concerns which provide a modular infrastruc-

ture for sharing iterative compilation performance data and related artefacts across

the internet [Fur+14]. In past work [Cum+16b], a domain-specific implementation of

knowledge sharing was used to accelerate tuning of stencil codes on GPUs by sharing

iterative compilation data between users across the internet.

Other challenges facing iterative compilation are the lack of portability and the

inability to respond to change. Any change to the exacting combination of program,

input data, and hardware may impact the results of optimisations, invalidating any prior

exploration of the optimisation space and requiring a new iterative compilation process

to be started from scratch. Online techniques attempt to mitigate these issues.

3.3.1.2 Online Iterative Compilation

The expensive optimisation space exploration required by iterative compilation has

spurred development of online iterative compilation that interleaves the exploration

of the optimisation space with regular program use. This is a challenging task, as a

random search of an optimisation space may result in many configurations with per-

formance far from optimal, degrading the quality of service for the user. In a real-world

system, evaluating many sub-optimal configurations may cause a significant slowdown

of the program. Thus a requirement of dynamic optimisers is that convergence time

towards optimal parameters is minimised. Further, exploration and exploitation must

be balanced so as to maintain an acceptable quality of service.

Tartara and Crespi Reghizzi [TC13] propose a technique for long-term learning of

compiler heuristics without an initial training phase. They treat the continued optimi-

sation of a program over its lifetime as an evolutionary process with the goal of finding

the best set of compiler heuristics for a given binary.

34 Chapter 3. Related Work

Ansel and Reilly [AR12] present an adversarial approach to online evolutionary

performance tuning. At runtime, the available parallel resources of a device are divided

between two partitions. Two configurations of the application are then executed simul-

taneously, one on each partition. One of the configurations is chosen to be “safe”, the

other, experimental. The configuration which yields the best performance is retained

as the “safe” choice for future iterations, and the process repeats.

Mpeis, Petoumenos, and Leather [MPL16] combine online and offline iterative

compilation for mobile devices. They capture slices of user behaviour on a device

online during use, which are then replayed offline for iterative compilation. This has

the advantage of specialising the performance tuning of software to the behaviour of

the individual user.

Related to online iterative compilation is dynamic optimisation. Dynamo [BDB00]

is a dynamic optimiser which performs binary level transformations of programs using

information gathered from runtime profiling and tracing. This provides the ability

for the program to respond to changes in dynamic features at runtime using low-level

binary transformations.

3.3.1.3 Algorithmic Choice and Rewriting

Complementary to iterative compilation is algorithmic choice. Like iterative compila-

tion, the goal is to find the configuration of a program that maximises performance.

However, whereas iterative compilation indirectly affects the program by selecting

compiler optimisations to produce different configurations, algorithmic choice selects

between permutations of semantically equivalent algorithms, typically explicitly pro-

vided by the user.

PetaBricks [Ans+09] is a language and compiler for algorithmic choice. Users pro-

vide multiple implementations of algorithms, optimised for different parameters or use

cases. This creates a search space of possible execution paths for a given program.

This has been combined with auto-tuning techniques for enabling optimised multigrid

programs [Cha+09], with the wider ambition that these auto-tuning techniques may

be applied to all algorithmic choice programs [Ans14]. While this helps produce effi-

cient programs, it places the burden of producing each algorithmic permutation on the

developer, requiring them to provide enough contrasting implementations to make a

search of the implementation space fruitful.

Halide [Rag+13] alleviates the burden of algorithmic rewriting by providing a high-

level domain-specific language that allows users to express pipelines of stencil com-

3.3. Program Optimisation 35

putations succinctly. The Lift framework [SD17] uses a set of semantic-preserving

rewrite rules to transform high-level Halide-like expressions to candidate low-level

implementations, creating a space of possible implementations.

3.3.2 Machine Learning for Compiler Optimisations

Machine learning has emerged as a viable means for automatically constructing heuris-

tics for code optimisation. Its great advantage is that it can adapt to changes in the

software and hardware environments as it has no a priori assumptions about their be-

haviour. This section provides a brief overview of the field. Comprehensive reviews

by Ashouri et al. [Ash+18] and Zhang et al. [Zha+18] provide further detail.

Pioneered by Agakov et al. [Aga+06], the application of machine learning to com-

piler optimisation uses iterative compilation to evaluate a collection of training pro-

grams offline and gather features describing the distinguishing properties of the pro-

grams. The program features and the optimisation decisions which yield the greatest

performance are combined and a model is learned. This model is then used to make

predictions on unseen programs by extracting the features describing the program.

Agakov et al. [Aga+06] use machine learning to guide the iterative compilation search.

Stephenson, Martin, and Reilly [SMR03] use “meta optimisation” to tune compiler

heuristics through an evolutionary algorithm to automate the search of the optimisa-

tion space. Kulkarni and Cavazos [KC12] formulate the phase-ordering problem as a

Markov process and construct artificial neural networks to predict beneficial optimisa-

tion orderings given a characterisation of the state of code being optimised. Ashouri

et al. [Ash+17] approach the phase-ordering problem by clustering optimisations and

using machine learning to predict the speedup of sequences of optimisation clusters.

Lutz, Fensch, and Cole [LFC13] and past work [Cum+16a] develop domain-specific

machine learning systems to optimise stencil computations on GPUs. Restricting the

domain of optimisations to a single class of algorithm simplifies the learning task by

limiting variance in the range of inputs. Ganapathi et al. [Gan+09] present an auto-

tuner for stencil codes which achieves performance up to 18% better than that of a hu-

man expert. From a space of 10 million configurations, they evaluate the performance

of a randomly selected 1500 combinations and use Kernel Canonical Correlation Anal-

ysis to build correlations between tunable parameter values and measured performance

targets. Performance targets are L1 cache misses, TLB misses, cycles per thread, and

power consumption. The use of KCAA restricts the scalability of their system as the

36 Chapter 3. Related Work

complexity of model building grows exponentially with the number of features. In

their evaluation, the system requires two hours of compute time to build the KCAA

model for only 400 seconds of benchmark data.

A domain-specific machine learning based auto-tuner is presented for the SkePU

library in [DEK11]. SkePU is a C++ template library for data-parallel computations

on GPUs. The auto-tuner predicts optimal device mapping (i.e. CPU, GPU) for a given

program by predicting execution time and memory copy overhead based on problem

size. Similarly, in this thesis machine learning is used to predict optimal heterogeneous

device mapping, though the system is capable of making predictions for arbitrary GPU

programs, it is not bound to a single template library. Moren and Gohringer [MG18]

also tackle the task of mapping arbitrary OpenCL kernels to CPU/GPU using dynamic

features extracted from the kernel at runtime.

Milepost GCC [Fur+11] is the first practical attempt to embed machine learning

into a production compiler. It adds an interface for extracting program features and

controlling optimisation passes, combined with a knowledge sharing system to dis-

tribute training data over the internet. The embedded interface exposes candidate fea-

tures which may be used to apply machine learning to optimisations in GCC.

Ogilvie et al. [Ogi+17] use active learning to reduce the cost of iterative compi-

lation by searching for points in the optimisation space which are close to decision

boundaries. This reduces the cost of training compared to a random search. The ap-

proach complements the techniques presented in this thesis, enabling more efficient

use of training data.

Besides compilers, there is a broad range of applications for machine learning

in improving software performance. Surprising applications include the use of ma-

chine learning to replace conventional hash functions in key-value stores. Kraska et

al. [Kra+18] find that replacing a cache-optimised B-Tree-Index with a deep learning

model yields up to 70% speedups with a 10× reduction in memory on real workloads.

Krishnan et al. [Kri+18] use deep reinforcement learning to optimise SQL join query

implementations. When applying machine learning in a new domain, the challenge is

often in finding a suitable program representation to use as the features.

3.3.2.1 Representing Programs with Features

The success of machine learning based code optimisation requires having high-quality

features that capture the important characteristics of programs. There is an infinite

number of potential features, and the suitability of features depends on the application

3.3. Program Optimisation 37

domain and the type of model used. Finding the right set of features to use for a

particular case is a non-trivial, time-consuming task.

Various forms of features have been used to summarise programs. Dubach et

al. [Dub+09] characterise programs using performance counters. Jiang et al. [Jia+10]

extract program-level behaviours such as loop trip counts and the size of input files.

Berral et al. [Ber+10] use additional runtime information such as system load.

In compiler research, the feature sets used for predictive models are often provided

without explanation and rarely is the quality of those features evaluated. More com-

monly, an initially large, high dimensional candidate feature space is pruned through

statistical analysis on training programs, or projected into a lower dimensional space.

Stephenson and Amarasinghe [SA05] propose two approaches to select the most use-

ful features from 38 candidates: the first using a Mutual Information Score to rank

features, the second using a greedy feature selection. Collins et al. [Col+13] use Prin-

cipal Component Analysis (PCA) to reduce a four-dimensional feature space to two

dimensions, reducing the size of the space to 0.05%. Dubach et al. [Dub+07] also use

PCA to reduce the dimensionality of their feature space, but determine the number

of components to use such that the selected components account for some fraction of

the total variance. In their case, 5 components account for 95% of the total variance.

FEAST [Tin+17] combines a range of existing feature selection methods to select use-

ful candidate features.

Prior works have sought to reduce the cost of feature design. Park, Cavazos, and

Alvarez [PCA12] present a unique graph-based approach for feature representations.

They use a Support Vector Machine (SVM) where the kernel is based on a graph sim-

ilarity metric. Their technique still requires hand-coded features at the basic block

level, but thereafter, graph similarity against each of the training programs takes the

place of global features. Being a kernel method, it requires that training data graphs be

shipped with the compiler, which may not scale as the size of the training data grows

with the number of instances, and some training programs may be large. Additionally,

their graph matching metric is expensive, requiring O(n3) time to compare against each

training example. This thesis presents techniques to construct machine learning com-

piler heuristics without the need for program features. These techniques do not need

any hand-built static code features, and the deployment memory footprint is constant

and prediction time is linear in the length of the program, regardless of the size of the

training set.

38 Chapter 3. Related Work

A few methods have been proposed to automatically generate features from the

compiler’s intermediate representation (IR). These approaches closely tie the imple-

mentation of the predictive model to the compiler IR, which means changes to the IR

will require modifications to the model. Leather, Bonilla, and O’Boyle [LBO14] use

genetic programming to search for features, requiring a huge grammar to be written,

some 160kB in length. Although much of this might be created from templates, se-

lecting the right range of capabilities and search space bias is non-trivial and up to the

expert. Namolaru et al. [Nam+10] express the space of features via logic program-

ming over relations that represent information from the IRs. They greedily search for

expressions that represent good features. However, this approach relies on expert se-

lected relations, combinators and constraints to work. For both approaches, the search

time may be significant.

Cavazos et al. [Cav+06] present a reaction-based predictive model for software-

hardware co-design. Their approach profiles the target program using several carefully

selected compiler options to see how a program runtime changes under these options

for a given micro-architecture setting. They then use the program “reactions” to pre-

dict the best available application speedup. While their approach does not use static

code features, developers must carefully select a few settings from a large number of

candidate options for profiling, because poorly chosen options significantly affect the

quality of the model. Moreover, the program must be run several times before optimi-

sation, while the techniques presented in this thesis do not require the program to be

profiled.

Compared to these approaches, the techniques presented in this thesis are entirely

automatic and require no expert involvement. In the field of compiler optimisations, no

work so far has developed deep learning methodologies for program feature generation

and selection. This work is the first to do so.

3.3.2.2 Distributed Representations for Programs

This thesis presents deep learning methodologies for learning over programs, inspired

by techniques developed in natural language processing. With these techniques, a pro-

gram source code is tokenised into a sequence of vocabulary words, and each word in

the vocabulary is mapped to a real-valued embedding space. There are many choices

in how to construct vocabularies and embeddings. Chen and Monperrus [CM19] re-

view some of the proposed techniques. Babii, Janes, and Robbes [BJR19] explore

the impact that different permutations of vocabulary make on the convergence time of

3.4. Deep Learning over Programs 39

language models for program code.

The techniques in this thesis use a hybrid character/token-level vocabulary to to-

kenise source code. This is to prevent the blow-up in vocabulary size that occurs from

using a purely token-based vocabulary. Cvitkovic, Singh, and Anandkumar [CSA18]

propose modelling vocabulary elements as nodes in a graph and then processing the

graph using Graph Neural Networks; this enables learning over an unbounded vocab-

ulary.

Mou et al. [Mou+16] derive an embedding space from the tokens in the source code

of a program. Wang, Singh, and Su [WSS18] propose an embedding space extracted

from program traces, rather than the syntactic structure of the program. Henkel et

al. [Hen+18] use symbolic execution to abstract the program traces. Embeddings are

then learned from these abstracted symbolic traces. Yin et al. [Yin+18] and Tufano et

al. [Tuf+19] explore techniques for learning embedding representations of code edits.

Neural Code Comprehension [BJH18] builds on techniques proposed in Chapter 6

of this thesis to develop embeddings derived from a novel Contextual Flow Graph

representation which contains the union of both data and control flow graphs. The em-

beddings are trained using a skip-gram model [Mik+13], using a vocabulary derived

from LLVM bitcode. By deriving a vocabulary from a compiler intermediate represen-

tation, this enables the same embeddings to be used for any programming language for

which there exists a front-end to LLVM.

3.4 Deep Learning over Programs

Deep learning is a nascent branch of machine learning in which deep or multi-level sys-

tems of processing layers are used to detect patterns in natural data [LBH15; WRX17].

Deep learning techniques for program generation and optimisation were reviewed in

Section 3.2.2.3 and Section 3.3.2 respectively, but there are other applications of deep

learning over programs related to this work.

The great advantage of deep learning over prior machine learning techniques is

its ability to process natural data in its raw form. This overcomes the traditionally

laborious and time-consuming practice of engineering feature extractors to process

raw data into an internal representation or feature vector. Deep learning has suc-

cessfully discovered structures in high-dimensional data and is responsible for many

breakthrough achievements in machine learning such as achieving human parity in

conversational speech recognition [Xio+16]; super-human level performance in video

40 Chapter 3. Related Work

games [Mni+15]; and autonomous vehicle control [LCW12]. The use of deep learning

techniques for software engineering has long been a goal of research [Whi+15].

A 2018 survey by Allamanis et al. describes the fast-moving field of deep learning

techniques for programming languages [All+18]. AutoComment [WYT13] mines the

popular Q&A site StackOverflow to automatically generate code comments. Natural-

ize [All+14] employs techniques developed in the natural language processing domain

to model coding conventions. JSNice [RVK15] leverages probabilistic graphical mod-

els to predict program properties such as identifier names for JavaScript. Allamanis,

Peng, and Sutton [APS16] use attentional neural networks to generate summaries of

source code. Nero [DAY19] uses an encoder-decoder architecture to predict method

names in stripped binaries. The system takes as input a sequence of call sites from the

execution of a binary and produces as output a predicted method name.

There is an increasing interest in mining source code repositories at a large scale

[AS13; Kal+09; Whi+15]. Previous uses outside the field of machine learning have

involved data mining of GitHub to analyse software engineering practices [Bai+14;

GAL14; VFS15; Wu+14]. Allamanis [All19] raises concerns about code duplicates in

corpora of open-source programs used for machine learning. They find that corpora

often contain a high percentage of duplicate or near-duplicate code. This impacts cases

where the corpus is divided into training and test sets. Duplicate code appearing both

in the training and test sets leads to artificially high accuracies of models on the test

set. The work in this thesis does not use open source corpora as test sets.

Machine learning has also been applied to other areas such as bug detection and

static analysis. Heo, Oh, and Yi [HOY17] present a machine-learning technique to

tune static analysis to be selectively unsound, based on anomaly detection techniques.

Koc et al. [Koc+17] develop a classifier to predict whether the error report produced

by a static analysis is a false positive based on the program structures of previous

reports that produced false error reports. Reports. In ASE. Lam et al. [Lam+15] em-

ploy artificial neural networks to relate keywords in bug reports to code tokens and

terms in source files and documentation to accelerate bug localisation. Wang, Liu, and

Tan [WLT16] employ a deep belief network [HOT06] to automatically learn semantic

features from token vectors extracted from the abstract syntax trees of programs. The

features are then used for automatic defect detection. Chen et al. [Che+17] train two

models on compiler test cases, one to predict whether a test case will trigger a compiler

bug, the other to predict the execution of the test program. The outputs of these two

models are used to schedule test cases so as to maximise the potential for exposing bugs

3.5. Summary 41

in the shortest amount of time. DeepBugs [PS18] combines a binary classification of

correct and incorrect code with semantic processing to name bugs. Code2Inv [Si+18]

uses reinforcement learning to learn loop invariants for program verification.

Machine learning has been applied to the task of automatic software repair. Mon-

perrus surveys the literature [Mon18]. DeepRepair [Whi+19] uses an encoder-decoder

architecture to sort code fragments according to their similarity to suspicious ele-

ments. Vasic et al. [Vas+19] train a model to jointly localise and repair variable-misuse

bugs using multi-headed pointer networks. SequenceR [Che+19a] uses sequence-to-

sequence learning to generate patches. Getafix [Bad+19] uses a hierarchical clustering

algorithm that summarises fix patterns into a hierarchy ranging from general to spe-

cific patterns. Brockschmidt et al. [Bro+18] present a novel methodology for program

generation in which a graph is used as the intermediate representation.

CodeBuff [TV16] uses a hand-designed set of features to learn abstract code for-

matting rules from a representative corpus of programs. Raychev, Vechev, and Ya-

hav [RVY14] use statistical models to provide contextual code completion. Gu et

al. [Gu+16] use deep learning to generate example code for APIs as responses to nat-

ural language queries. Oda et al. [Oda+15] employ machine translation techniques to

generate pseudo-code from source code.

3.5 Summary

This chapter has surveyed the relevant literature in the fields of program generation,

program optimisation, and the rapidly evolving application of deep learning for pro-

gramming languages. The next chapter presents a novel technique to improve the per-

formance of machine learning for compiler heuristics by generating executable bench-

marks using models trained on corpora of example programs.

Chapter 4

Improving the Performance of

Predictive Models for Compiler

Heuristics

4.1 Introduction

Predictive modelling using machine learning is an effective method for building com-

piler heuristics, but there is a shortage of benchmarks. Typical machine learning exper-

iments outside of the compilation field train over thousands or millions of examples.

In machine learning for compilers, however, there are typically only a few dozen com-

mon benchmarks available. This limits the quality of learned models, as they have

very sparse training data for what are often high-dimensional feature spaces. What

is needed is a way to generate an unbounded number of training programs that finely

cover the feature space. At the same time, the generated programs must be similar to

the types of programs that human developers actually write, otherwise, the learning

will target the wrong parts of the feature space.

This chapter introduces CLgen, a generator for OpenCL benchmarks. Open source

repositories are mined for program fragments which are used to automatically con-

struct deep learning models for how humans write programs. The models are sam-

pled to generate an unbounded number of runnable training programs. The quality

of the programs is such that even human developers struggle to distinguish the gen-

erated programs from handwritten code. In this chapter, CLgen is used to automat-

ically synthesise thousands of programs and show that learning over these improves

the performance heterogeneous workloads using a state-of-the-art predictive model by

43

44 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

Figure 4.1: Training a predictive model for compiler optimisations. A model is con-

structed from training data, which comprises the features, performance measurements,

and runtime parameters of training programs and their accompanying data sets.

1.27×. In addition, the fine covering of the feature space automatically exposes weak-

nesses in the feature design which are invisible with the sparse training examples from

existing benchmark suites. Correcting these weaknesses further increases workload

performance by 4.30×.

Predictive modelling is a well-researched method for building optimisation heuris-

tics that often exceed human experts and reduces development time [CFL12; Cum+16b;

FE15; LBO14; MDO14; MSD16; Ogi+14; Wan+14; WO09; WO10; WWO14]. Fig-

ure 4.1 shows the process by which a predictive model is constructed. A set of training

programs are identified that are expected to be representative of the application do-

main. The programs are compiled and executed with different parameter values for

the target heuristic, to determine which are the best values for each training program.

Each program is also summarised by a vector of features which describe the informa-

tion that is expected to be important in predicting the best heuristic parameter values.

These training examples of program features and desired heuristic values are used to

create a machine learning model which, when given the features from a new, unseen

program, can predict good heuristic values for it.

It is common for feature vectors to contain dozens of elements. This means that

a large volume of training data is needed to have adequate sampling over the feature

space. Without it, the machine-learned models only capture the coarse characteristics

of the heuristic, and new programs which do not lie near to training points may be

wrongly predicted. The accuracy of the machine-learned heuristic is thus limited by

the sparsity of available training points.

There have been efforts to solve this problem using templates. The essence of the

approach is to construct a probabilistic grammar with embedded semantic actions that

define a language of possible programs. New programs may be created by sampling

4.1. Introduction 45

the grammar and, through setting probabilities on the grammar productions, the sam-

pling is biased towards producing programs from one part of the space or another.

This technique is potentially completely general since a grammar might theoretically

be constructed to match any desired program domain. However, despite being theo-

retically possible, it is not easy to construct grammars which are both suitably general

and also produce programs that are in any way similar to human-written programs. It

has been shown to be successful only over a highly restricted space of stencil bench-

marks with little control flow or program variability [Cum+16a; FE15], or by using a

very limited set of programming language features [KSX19]. But, it is not clear how

much effort it will take, or even if it is possible for human experts to define grammars

that are capable of producing human-like programs in more complex domains, without

restrictions on programming language features.

The approach introduced in this chapter does not require an expert to define what

human programs look like. Instead, the structure of programs is automatically inferred

over a huge corpus of handwritten programs taken from open source projects. A prob-

ability distribution is constructed over sets of characters seen in human-written code.

This distribution is sampled to generate new random programs which, because the dis-

tribution models human-written code, are indistinguishable from human code. These

samples can be used to populate training data with an unbounded number of human-

like programs, covering the space far more finely than either existing benchmark suites

or even the corpus of open source projects. The approach is enabled by two recent

developments:

The first is the breakthrough in effectiveness of deep learning for modelling com-

plex structure in natural languages [Gra13; SVL14]. Deep learning is capable not just

of learning the macro syntactical and semantic structure of programs, but also the nu-

ances of how humans typically write code. It is truly remarkable when one considers

that it is given no prior knowledge of the syntax or semantics of the language.

The second is the increasing popularity of public and open platforms for hosting

software projects and source code. This popularity provides thousands of program-

ming examples that are necessary to feed into the deep learning. These open source

examples are not, sadly, as useful for directly learning the compiler heuristics since

they are not presented in a uniform, runnable manner, nor do they typically have ex-

tractable test data. Preparing each of the thousands of open source projects to be di-

rectly applicable for learning compiler heuristics would be an insurmountable task. In

addition to the program generator, CLgen, this chapter presents an accompanying host

46 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

driver which generates data sets for, then executes and profiles synthesised programs.

In the course of evaluating the technique against prior work, the generator is found

to be useful also for evaluating the quality of features. Since the program space is

covered so much more finely than in the prior work, which only used standard bench-

mark suites, CLgen is able to find multiple programs with identical feature values but

different best heuristic values. This indicates that the features are not sufficiently dis-

criminative and should be extended with more information to allow those programs to

be separated. Doing so significantly increases the performance of the learned heuristic.

This chapter is organised as follows: first, Section 4.2 presents the motivation for

the use of benchmark generators in predictive modelling. Then Section 4.3 introduces

CLgen, a generator for human-like source code. Section 4.4 describes the driver for

executing synthesised source code. CLgen is evaluated first through a qualitative eval-

uation comparing the output to handwritten code in Section 4.5 then quantitatively by

extending the training set of a state-of-the-art machine learning optimisation heuristic.

The setup of the quantitative experiments is described in Section 4.6 and the results in

Section 4.7. Finally, Section 4.8 concludes this chapter.

4.2 The Case for Generating Benchmarks

This section makes the argument for synthetic benchmarks. Frequently used bench-

mark suites were identified in a survey of 25 GPGPU performance tuning research

papers from four top tier conferences between 2013–2016: CGO, HiPC, PACT, and

PPoPP. The average number of benchmarks used in each paper is 17, and a small

pool of benchmark suites account for the majority of results, illustrated in Figure 4.2.

The performance of the state-of-the-art Grewe, Wang, and O’Boyle [GWO13] predic-

tive model was evaluated across each of the 7 most frequently used benchmark suites

(accounting for 94% of results in the surveyed papers). The model predicts whether

running an OpenCL kernel on the GPU provides better performance than on the CPU.

The full experimental setup is described in Section 4.6.

Table 4.1 summarises the results. The performance of a model trained on one

benchmark suite and used to predict the mapping for another suite is generally poor.

The benchmark suite which provides the best results, NVIDIA SDK, achieves on av-

erage only 49% of the optimal performance. The worst case is when training with

Parboil to predict the optimal mappings for Polybench, where the model achieves only

11.5% of the optimal performance. From this, it is clear that models trained on one

4.2. The Case for Generating Benchmarks 47

Ro
di

ni
a

NV
ID

IA
 S

DK

AM
D

SD
K

Pa
rb

oi
l

NA
S

Po
ly

be
nc

h

SH
OC

Ad
-h

oc

IS
PA

SS

Lo
ne

st
ar

SP
EC

-V
ie

wp
er

f

M
AR

S

GP
GP

Us
im

0

2

4

6

#.
 b

en
ch

m
ar

ks
 u

se
d

Figure 4.2: The average number of benchmarks used in GPGPU research papers pub-

lished between 2013-2016 in CGO, HiPC, PACT, and PPoPP conferences. The average

GPGPU research paper uses 17 benchmarks, with the seven most popular benchmark

suites accounting for 94% of results.

A
M

D

N
PB

N
V

ID
IA

Pa
rb

oi
l

Po
ly

be
nc

h

R
od

in
ia

SH
O

C
AMD - 38.0% 74.5% 76.7% 21.7% 45.8% 35.9%

NPB 22.7% - 45.3% 36.7% 13.4% 16.1% 23.7%

NVIDIA 29.9% 37.9% - 21.8% 78.3% 18.1% 63.2%

Parboil 89.2% 28.2% 28.2% - 41.3% 73.0% 33.8%

Polybench 58.6% 30.8% 45.3% 11.5% - 43.9% 12.1%

Rodinia 39.8% 36.4% 29.7% 36.5% 46.1% - 59.9%

SHOC 42.9% 71.5% 74.1% 41.4% 35.7% 81.0% -

Table 4.1: Performance relative to the optimal of the Grewe, Wang, and O’Boyle pre-

dictive model across different benchmark suites on an AMD GPU. The columns show

the suite used for training; the rows show the suite used for testing. On average, a

predictive model trained on one benchmark suite and tested on another achieves only

49% of the optimal performance.

48 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

benchmark suite fail to generalise across other suites.

This problem is caused both by the limited number of benchmarks contained in

each suite, and the distribution of benchmarks within the feature space. Figure 4.3

shows the feature space of the Parboil benchmark suite, showing whether, for each

benchmark, the model was able to correctly predict the appropriate optimisation. Prin-

cipal Component Analysis is used to reduce the multi-dimensional feature space to aid

visualisation.

As seen in Figure 4.3a, there is a dense cluster of neighbouring benchmarks, a

smaller cluster of three benchmarks, and two outliers. The lack of neighbouring obser-

vations means that the model is unable to learn a good heuristic for the two outliers,

which leads to them being incorrectly optimised. In Figure 4.3b, additional bench-

marks which are neighbouring in the feature space were hand-selected and the model

retrained. The addition of these observations (and the information they provide about

that part of the feature space) causes the two outliers to be correctly optimised. Such

outliers can be found in all of the benchmark suites of Table 4.1.

These results highlight the significant effect that the number and distribution of

training programs have on the quality of predictive models. Without good coverage

of the feature space, any machine learning methodology is unlikely to produce high-

quality heuristics, suitable for general use on arbitrary real applications, or even ap-

plications from different benchmark suites. The novel approach described in the next

section addresses this problem by generating an unbounded number of programs to

cover the feature space with fine granularity.

4.3 CLgen: A System for Generating OpenCL

Benchmarks

This section introduces CLgen, an undirected, general-purpose program synthesizer.

It adopts and augments recent advanced techniques from deep learning to learn over

massive code-bases. In contrast to existing grammar- and template-based approaches,

CLgen is entirely probabilistic. The system learns to program using recurrent neural

networks which model the semantics and usage of a huge corpus of code fragments in

the target programming language.

4.3. CLgen: A System for Generating OpenCL Benchmarks 49

(a)

(b)

Figure 4.3: A two dimensional projection of the Grewe, Wang, and O’Boyle feature

space, showing predictive model results over Parboil benchmarks on an NVIDIA GPU.

Two outliers in (a) are incorrectly predicted due to the lack of nearby observations. The

addition of neighbouring observations in (b) corrects this.

50 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

4.3.1 Overview

Figure 4.4 provides an overview of the program synthesis and execution pipeline.

CLgen learns the semantics and structure from over a million lines of handwritten code

from GitHub, and synthesises programs through a process of iterative model sampling.

A host driver, described in Section 4.4, executes the synthesised programs to gather

performance data for use in predictive modelling. While the approach is demonstrated

using OpenCL, it is language-agnostic. This approach extends the state-of-the-art by

providing a general-purpose solution for benchmark synthesis, leading to better and

more accurate predictive models.

Section 4.3.2 describes the assembly of a language corpus, Section 4.3.3 describes

the application of deep learning over this corpus, and Section 4.3.4 describes the pro-

cess of synthesising programs.

4.3.2 An OpenCL Language Corpus

Deep learning requires large data sets [LBH15]. For the purpose of modelling a pro-

gramming language, this means assembling a large collection of real, handwritten

source codes. OpenCL codes are assembled by mining public repositories on the pop-

ular code hosting site GitHub.

This is itself a challenging task since OpenCL is an embedded language, meaning

device code is often difficult to untangle since GitHub does not presently recognise it as

a searchable programming language. A search engine was developed which attempts to

identify and download standalone OpenCL files through a process of file scraping and

recursive header inlining. The result is a 2.8 million line data set of 8078 “content files”

which potentially contain OpenCL code, originating from 793 GitHub repositories.

The raw data set extracted from GitHub is then pruned using a custom toolchain

developed for rejection filtering and code rewriting, built on LLVM.

Rejection Filter The rejection filter accepts as input a content file and returns whether

or not it contains compilable, executable OpenCL code. To achieve this, it attempts to

compile the input to NVIDIA PTX byte code and performs static analysis to ensure a

minimum static instruction count of three. Any inputs which do not compile or contain

fewer than three instructions are discarded.

During initial development, it became apparent that isolating the OpenCL device

code leads to a higher-than-expected discard rate (that is, seemingly valid OpenCL files

4.3. CLgen: A System for Generating OpenCL Benchmarks 51

Figure 4.4: The benchmark synthesis and execution pipeline. Software is mined from

GitHub; this is used to construct a language model from which new programs may be

synthesised; a benchmark driver is used to produce performance results.

52 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

being rejected). Through analysing 148k lines of compilation errors, a large number

of failures were discovered to be caused by undeclared identifiers, a result of isolating

device code. 50% of undeclared identifier errors in the GitHub dataset were caused

by only 60 unique identifiers. To address this, a shim header was developed which

contains inferred values for common type definitions (e.g. FLOAT T), and common

constants (e.g. WGSIZE), shown in Listing 1.

Injecting the shim decreases the discard rate from 40% to 32%, responsible for an

additional 88k lines of code in the final language corpus. The resulting data set is 2.0

million lines of compilable OpenCL source code.

Code Rewriter Programming languages have few of the issues of semantic inter-

pretation present in natural language, though there remain many sources of variance

at the syntactic level. For example, the presence and content of comments in code,

and the choice of identifying names given to variables. For the purposes of generative

modelling, these ambiguities are considered to be non-functional variance. The code

rewriter is a tool developed to normalise code of these variances so as to make code

more amenable to machine learning. This is a three-step process:

1. The source file is pre-processed using the compiler front-end to remove macros,

conditional compilation, and source comments.

2. Identifiers are rewritten to have a short but unique name based on their order of

appearance, using the sequential series {a,b,c, . . . ,aa,ab,ac, . . .} for variables

and {A,B,C, . . . ,AA,AB,AC, . . .} for functions. This process isolates the syn-

tactic structure of the code, and unlike prior work [AS13], this rewrite method

preserves program behaviour. Language built-ins (e.g. get global id, asin)

are not rewritten.

3. A variant of the Google C++ code style [Wei+11] is enforced to ensure consistent

use of braces, parentheses, and white space.

An example of the code rewriting process is shown in Listings 2 and 3. A side effect

of this process is a reduction in code size, largely due to the removal of comments and

excess white space. The final language corpus contains 1.3 million lines of transformed

OpenCL, consisting of 9487 kernel functions. Identifier renaming reduces the bag-of-

words vocabulary size — the number of unique entries in the tokenised corpus — by

84%.

4.3. CLgen: A System for Generating OpenCL Benchmarks 53

1 /* Enable OpenCL features */

2 #define cl_clang_storage_class_specifiers

3 #define cl_khr_fp64

4 #include <clc/clc.h>

5

6 /* Inferred types */

7 typedef float FLOAT_T;

8 typedef float FLOAT_TYPE;

9 typedef float FPTYPE;

10 typedef unsigned int INDEX_TYPE;

11 ... (34 more)

12

13 /* Inferred constants */

14 #define M_PI 3.14025

15 #define WG_SIZE 128

16 #define IMAGEH 512

17 #define IMAGEW 1024

18 #define INPUT_HEIGHT 512

19 #define INPUT_WIDTH 1024

20 #define ZERO 0

21 #define ONE 1

22 ... (177 more)

Listing 1: An overview of the shim header file, providing commonly used type aliases

and constants for compiling OpenCL files taken on GitHub.

54 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

1 // saxpy.cl - Compute kernel for SAXPY

2 #define DTYPE float

3 #define ALPHA(a) 3.5f * a

4 inline DTYPE ax(DTYPE x) { return ALPHA(x); }

5

6 kernel void saxpy(/* SAXPY kernel */

7 global DTYPE *input1,

8 global DTYPE *input2,

9 const int nelem)

10 {

11 unsigned int idx = get_global_id(0);

12 if (idx < nelem) { // = ax + y

13 input2[idx] += ax(input1[idx]); } }

Listing 2: An example OpenCL content file prior to code rewriting.

1 inline float A(float a) {

2 return 3.5f * a;

3 }

4

5 kernel void B(global float* b, global float* c, const int

d) {↪→

6 unsigned int e = get_global_id(0);

7

8 if (e < d) {

9 c[e] += A(b[e]);

10 }

11 }

Listing 3: The example OpenCL content file of Listing 2 after code rewriting. Conditional

compilation has been removed, the variables and functions renamed, and a code style

enforced.

4.3. CLgen: A System for Generating OpenCL Benchmarks 55

4.3.3 Learning OpenCL

Generating valid, executable program code is an ambitious and challenging goal for

unsupervised machine learning. CLgen employs state-of-the-art deep language mod-

elling techniques to achieve this task.

The Long Short-Term Memory (LSTM) [HS97] architecture of Recurrent Neural

Network [Mik10; SSN12] is used to learn a character-level language model over the

corpus of OpenCL compute kernels. The LSTM network architecture comprises re-

current layers of memory cells, each consisting of input, output, and forget gates, and

an output layer providing normalised probability values from a 1-of-K coded vocabu-

lary [GS05].

A 3-layer LSTM network is used with 2048 nodes per layer, implemented in Torch.

This 17-million parameter model is trained using Stochastic Gradient Descent for 50

epochs, using an initial learning rate of 0.002, decaying by a factor of one half every

5 epochs. Training took three weeks on a single machine using an NVIDIA GTX

Titan, with a final model size of 648MB1. Training the network is a one-off cost, and is

parallelisable across devices. The trained network can be deployed to lower-compute

machines for use.

4.3.4 Synthesising Source Code

OpenCL compute kernels are synthesised by iteratively sampling the learned language

model. Two modes for model sampling are supported: the first involves providing an

argument specification, stating the data types and modifiers of all kernel arguments.

When an argument specification is provided, the model synthesises kernels matching

this signature. In the second sampling mode, this argument specification is omitted,

allowing the model to synthesise compute kernels of arbitrary signatures, dictated by

the distribution of argument types within the language corpus.

In either mode, a seed text is generated and the model sampled, character by char-

acter, until the end of the compute kernel is reached, or until a predetermined maxi-

mum number of characters is reached. Algorithm 1 illustrates this process. The same

rejection filter as is used during corpus assembly that either accepts or rejects the sam-

ple as a candidate synthetic benchmark. Listings 4, 5, and 6 show three examples of

unique compute kernels generated in this manner from an argument specification of

1No effort was made to minimise training time. Subsequent work using tuned parameters and a more
efficient model implementation in TensorFlow has reduced this time considerably.

56 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

Algorithm 1 Using an LSTM model to sample a candidate OpenCL kernel.
Require: LSTM model M, maximum kernel length n.

Ensure: Completed sample string S.

1: S←“ kernel void A(const int a) {” . Seed text

2: d← 1 . Initial code block depth

3: for i← |S| to n do
4: c← PredictCharacter(M,S) . Generate new character

5: if c =“{” then
6: d← d +1 . Entered code block, increase depth

7: else if c =“}” then
8: d← d−1 . Exited code block, decrease depth

9: end if
10: S← S+ c . Append new character to sample

11: if depth = 0 then
12: break . Exited function block, stop sampling

13: end if
14: end for

three single-precision floating-point arrays and a read-only signed integer. The quality

of synthesised code is evaluated in Section 4.5.

4.4 CLdrive: A System for Driving Arbitrary OpenCL

Kernels

This section presents CLdrive, a host driver developed to gather performance data from

synthesised CLgen code. The driver accepts as input an OpenCL kernel, generates pay-

loads of user-configurable sizes, then executes the kernel using the generated payloads

so as to collect kernel runtimes, and to provide dynamic checking of kernel behaviour.

4.4.1 Generating Data Payloads

A payload encapsulates all of the arguments of an OpenCL compute kernel. After

parsing the input kernel to derive argument types, a rule-based approach is used to

generate synthetic payloads. For a given global size Sg: host buffers of Sg elements are

allocated and populated with random values for global pointer arguments, device-only

4.4. CLdrive: A System for Driving Arbitrary OpenCL Kernels 57

1 kernel void A(global float* a,

2 global float* b,

3 global float* c,

4 const int d) {

5 int e = get_global_id(0);

6 float f = 0.0;

7 for (int g = 0; g < d; g++) {

8 c[g] = 0.0f;

9 }

10 barrier(1);

11

12 a[get_global_id(0)] = 2*b[get_global_id(0)];

13 }

Listing 4: CLgen-synthesised vector operation with branching and synchronisation.

1 kernel void A(global float* a,

2 global float* b,

3 global float* c,

4 const int d) {

5 int e = get_global_id(0);

6 if (e >= d) {

7 return;

8 }

9 c[e] = a[e] + b[e] + 2 * a[e] + b[e] + 4;

10 }

Listing 5: CLgen-synthesised zip operation which computes ci = 3ai +2bi +4.

58 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

1 kernel void A(global float* a,

2 global float* b,

3 global float* c,

4 const int d) {

5 unsigned int e = get_global_id(0);

6 float16 f = (float16)(0.0);

7 for (unsigned int g = 0; g < d; g++) {

8 float16 h = a[g];

9 f.s0 += h.s0;

10 f.s1 += h.s1;

11 f.s2 += h.s2;

12 f.s3 += h.s3;

13 f.s4 += h.s4;

14 f.s5 += h.s5;

15 f.s6 += h.s6;

16 f.s7 += h.s7;

17 f.s8 += h.s8;

18 f.s9 += h.s9;

19 f.sA += h.sA;

20 f.sB += h.sB;

21 f.sC += h.sC;

22 f.sD += h.sD;

23 f.sE += h.sE;

24 f.sF += h.sF;

25 }

26 b[e] = f.s0 + f.s1 + f.s2 + f.s3 + f.s4 + f.s5 + f.s6 + f.s7 +

f.s8 + f.s9 + f.sA + f.sB + f.sC + f.sD + f.sE + f.sF;↪→

27 }

Listing 6: CLgen-synthesised partial reduction over reinterpreted vector type.

4.4. CLdrive: A System for Driving Arbitrary OpenCL Kernels 59

buffers of Sg elements are allocated for local pointer arguments, integral arguments are

given the value Sg, and all other scalar arguments are given random values. Host to

device data transfers are enqueued for all non-write-only global buffers, and all non-

read-only global buffers are transferred back to the host after kernel execution.

4.4.2 Dynamic Checker

A class of programs are defined as performing useful work if they predictably compute

some result. For the purpose of performance benchmarking the values computed by

a program are of little interest, so a low-overhead runtime behaviour check is used to

validate that a synthesised program does useful work based on the outcome of four

executions of a tested program:

1. Create 4 equal size payloads A1in, B1in, A2in, B2in, subject to restrictions: A1in =

A2in, B1in = B2in, A1in 6= B1in.

2. Execute kernel k 4 times: k(A1in)→ A1out , k(B1in)→ B1out , k(A2in)→ A2out ,

k(B2in)→ B2out .

3. Assert that:

• A1out 6= A1in and B1out 6= B1in, else k has no output (for these inputs).

• A1out 6= B1out and A2out 6= B2out , else k is input insensitive t (for these in-

puts).

• A1out = A2out and B1out = B2out , else k is non-deterministic.

Equality checks for floating point values are performed with an appropriate ep-

silon to accommodate rounding errors, and a timeout threshold is also used to catch

kernels which are non-terminating. The method is based on random differential test-

ing [McK98], though I emphasise that this is not a general purpose approach and

is tailored specifically for benchmarking for performance characterisation. For ex-

ample, one would anticipate a false positive rate for kernels with subtle sources of

non-determinism which more thorough methods may expose [BCD12; PM15; SD16],

however for the purpose of performance modelling, such methods were deemed un-

necessary.

60 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

4.5 Qualitative Evaluation of Generated Programs

This section evaluates the quality of programs synthesised by CLgen by their likeness

to handwritten code.

4.5.1 Methodology

Judging whether a piece of code has been written by a human is a challenging task for

a machine, so a methodology was adopted from artificial intelligence research based

on the Turing Test [Gao+15; Vin+15; ZIE16]. If the output of CLgen is human-like

code, it reasons that a human judge will be unable to distinguish it from handwritten

code.

A double-blind test was devised in which 15 volunteer OpenCL developers from

industry and academia were shown 10 OpenCL kernels each. Participants were tasked

with judging whether, for each kernel, they believed it to have been written by hand or

by machine. Kernels were randomly selected for each participant from two equal sized

pools of synthetically generated and handwritten code from GitHub. The samples from

GitHub were vetted to ensure that they were indeed handwritten and not generated by

machine or template (such vetting is a manual process and was not applied during the

assembly of the model training corpus). The code rewriting process was applied to all

kernels to remove comments and ensure uniform identifier naming. The participants

were divided into two groups of 10 and 5 members, with the larger group reviewing

synthetic code generated CLgen. The smaller group acted as a control group, reviewing

synthetic code generated by CLSmith [Lid+15], an OpenCL program generator for

differential testing2.

4.5.2 Experimental Results

Each participant’s answers were scored. The average score of the control group is

96% (stdev. 9%), an unsurprising outcome as programs generated using CLSmith for

testing have multiple “tells”; for example, they make much heavier use of structs

than is typical, they use unusual combinations of programming language features, and

their only input is a single ulong pointer. There were no false positives (synthetic code

labelled human) for CLSmith, only false negatives (human code labelled synthetic).

2An online version of this test is available at https://chriscummins.cc.uk/s/human or robot/.

4.6. Experimental Methodology 61

With CLgen synthesised programs, the average score was 52% (stdev. 17%), and

the ratio of errors was even. This suggests that CLgen code is indistinguishable from

handwritten programs, with human judges scoring no better than random chance.

4.6 Experimental Methodology

The synthetic benchmark generator described in this chapter aims to improve the per-

formance predictive models by augmenting their training data so as to provide a finer

grained exploration of the feature space then would otherwise be possible. To test the

hypothesis that CLgen-generated benchmarks are useful for training, an experiment

was designed in which a state-of-the-art predictive model was trained and evaluated

with and without the addition of synthetic benchmarks and the performance compared.

4.6.1 Experimental Setup

Predictive Model To evaluate the efficacy of synthetic benchmarks for training, the

predictive model of Grewe, Wang, and O’Boyle is used [GWO13]. The predictive

model is used to determine the optimal mapping of a given OpenCL kernel to either a

GPU or CPU. It uses supervised learning to construct a decision tree with a combina-

tion of static and dynamic kernel features extracted from source code and the OpenCL

runtime, detailed in Table 4.2.

Benchmarks As in [GWO13], the model is tested on the NAS Parallel Benchmarks

(NPB) [Bai+91]. The hand-optimised OpenCL implementation of Seo, Jo, and Lee

[SJL11] is used. In [GWO13] the authors augment the training set of the predictive

model with 47 additional kernels taken from 4 GPGPU benchmark suites. To more

fully sample the program space, a much larger collection of 142 kernels is used, sum-

marised in Table 4.3. These additional programs are taken from all 7 of the most

frequently used benchmark suites identified in Section 4.2. None of these programs

were used to train CLgen. This brings the total number of OpenCL benchmark kernels

used in the evaluation to 256. 1,000 kernels were synthesised with CLgen to use as

additional benchmarks.

Experimental Platforms Two 64-bit CPU-GPU systems are used to evaluate the ap-

proach, detailed in Table 4.4. One system has an AMD GPU and uses OpenSUSE 12.3;

62 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

Name Type Description

comp static #. compute operations

mem static #. accesses to global memory

localmem static #. accesses to local memory

coalesced static #. coalesced memory accesses

transfer dynamic size of data transfers

wgsize dynamic #. work-items per kernel

(a) Individual code features

Name Formulation Description

F1 transfer/(comp+mem) Communication-computation ratio

F2 coalesced/mem % Coalesced memory accesses

F3 (localmem/mem)×wgsize Memory access ratio × #. work-items

F4 comp/mem Computation-memory ratio

(b) Combinations of raw features

Table 4.2: Features used by Grewe, Wang, and O’Boyle to predict CPU/GPU mapping

of OpenCL kernels. The features are extracted using a custom analysis pass built using

LLVM.

Version #. benchmarks #. kernels

NPB (SNU [SJL11]) 1.0.3 7 114

Rodinia [Che+09] 3.1 14 31

NVIDIA SDK 4.2 6 12

AMD SDK 3.0 12 16

Parboil [Str+12] 0.2 6 8

PolyBench [Gra+12] 1.0 14 27

SHOC [Dan+10] 1.1.5 12 48

Total - 71 256

Table 4.3: List of benchmarks used to train and evaluate the Grewe, Wang, and O’Boyle

predictive model.

4.6. Experimental Methodology 63

Intel CPU AMD GPU NVIDIA GPU

Model Core i7-3820 Tahiti 7970 GTX 970

Frequency 3.6 GHz 1000 MHz 1050 MHz

#. Cores 4 2048 1664

Memory 8 GB 3 GB 4 GB

Throughput 105 GFLOPS 3.79 TFLOPS 3.90 TFLOPS

Driver AMD 1526.3 AMD 1526.3 NVIDIA 361.42

Compiler GCC 4.7.2 GCC 4.7.2 GCC 5.4.0

Table 4.4: Experimental platforms used to evaluate the Grewe, Wang, and O’Boyle

predictive model.

the other is equipped with an NVIDIA GPU and uses Ubuntu 16.04. Both platforms

were unloaded.

Data sets The NPB and Parboil benchmark suites are packaged with multiple data

sets. All of the packaged data sets are used (5 per program in NPB, 1-4 per program

in Parboil). For all other benchmarks, the default data sets are used. The CLgen host

driver was configured to synthesise payloads between 128B-130MB, approximating

that of the dataset sizes found in the benchmark programs.

4.6.2 Methodology

The same methodology is used as in [GWO13]. Each experiment is repeated five times

and the average execution time is recorded. The execution time includes both device

compute time and the data transfer overheads.

Models are evaluated using leave-one-out cross-validation. For each benchmark,

a model is trained on data from all other benchmarks and used to predict the mapping

for each kernel and dataset in the excluded program. The process is repeated with

and without the addition of synthetic benchmarks in the training data. Only the real

handwritten benchmarks are used to test model predictions, the synthetic benchmarks

are not used.

64 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

4.7 Experimental Results

The effectiveness of synthetic benchmarks is evaluated on two heterogeneous systems.

First, the performance of a state-of-the-art predictive model [GWO13] is compared

with and without the addition of synthetic benchmarks, then synthetic benchmarks are

shown to expose weaknesses in the feature design and how these can be addressed to

develop a better model. Finally, the ability of CLgen to explore the program feature

space is compared against a state-of-the-art program generator.

4.7.1 Performance Evaluation

Figure 4.5 shows speedups of the Grewe, Wang, and O’Boyle predictive model over

the NAS Parallel Benchmark suite with and without the addition of synthesised bench-

marks for training. Speedups are calculated relative to the best single-device map-

ping for each experimental platform, which is CPU-only for AMD and GPU-only

for NVIDIA. The fine-grained coverage of the feature space which synthetic bench-

marks provide improves performance dramatically for the NAS benchmarks. Across

both systems, an average speedup of 2.42× is achieved with the addition of synthetic

benchmarks, with prediction improvements over the baseline for 62.5% of benchmarks

on AMD and 53.1% on NVIDIA.

The strongest performance improvements are on NVIDIA with the FT benchmark

which suffers greatly under a single-device mapping. However, the performance on

AMD for the same benchmark slightly degrades after adding the synthetic benchmarks.

This issue is addressed in the next section.

4.7.2 Extending the Predictive Model

Feature designers are bound to select as features only properties which are significant

for the handful of benchmarks they test on, which limits a model’s ability to generalise

over a wider range of programs. This is found to be the case with the Grewe, Wang,

and O’Boyle model. The addition of automatically generated programs exposed two

distinct cases where the model failed to generalise as a result of overspecialising to the

NPB suite.

The first case is that the feature F3 of Table 4.2 is sparse on many programs. This

is a result of the NPB implementation’s heavy exploitation of local memory buffers

and the method by which they combined features (speculatively, this may have been

4.7. Experimental Results 65

BT.A

BT.B

BT.S

BT.W

CG.A

CG.B

CG.C

CG.S

CG.W

EP.A

EP.B

EP.C

EP.W

FT.A

FT.B

FT.S

FT.W

LU.A

LU.B

LU.C

LU.S

LU.W

MG.A

MG.B

MG.C

MG.S

MG.W

SP.A

SP.B

SP.C

SP.S

SP.W

Average

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

Speedup over CPU

G
re

w
e
 e

t a
l.

w
. C

L
g
e
n

(a) AMD Tahiti 7970

BT.A

BT.B

BT.S

BT.W

CG.A

CG.B

CG.C

CG.S

CG.W

EP.A

EP.B

EP.C

EP.W

FT.A

FT.B

FT.S

FT.W

LU.A

LU.B

LU.C

LU.S

LU.W

MG.A

MG.B

MG.C

MG.S

MG.W

SP.A

SP.B

SP.C

SP.S

SP.W

Average

1 3 5 7 9

1
1

1
3

1
5

1
7

Speedup over GPU

G
re

w
e
 e

t a
l.

w
. C

L
g
e
n

(b) NVIDIA GTX 970

Figure 4.5: Speedup of programs using Grewe, Wang, and O’Boyle predictive model

with and without synthetic benchmarks. The predictive model outperforms the best

static device mapping by a factor of 1.26× on AMD and 2.50× on NVIDIA. The addition

of synthetic benchmarks improves the performance to 1.57× on AMD and 3.26× on

NVIDIA.

66 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

a necessary dimensionality reduction in the presence of sparse training programs). A

simple countermeasure is taken to address this by extending the model to use the raw

feature values in addition to the combined features.

The second case is that some CLgen-generated programs had identical feature val-

ues as in the benchmark set, but had different behaviour (i.e. optimal mappings).

Listing 8 shows one example of a CLgen benchmark which is indistinguishable in the

feature space to one of the of existing benchmarks — AMD’s Fast Walsh-Hadamard

transform, Listing 7 — but with different behaviour. Comparing the program frag-

ments reveals two primary differences: Listing 7 contains indirect memory accesses

that cannot be coalesced, and Listing 8 contains a branching operation whereas List-

ing 7 has linear control flow. Neither of these properties are captured by the features

used in the Grewe, Wang, and O’Boyle model. In the case of the branching operation,

we can speculate that the choice not to consider control flow was an intentional deci-

sion by the authors given that the NPB programs on which the model was initially eval-

uated on are implemented in a manner which aggressively minimises branching. How-

ever, as demonstrated through CLgen’s automatic exploration of the program space,

such a decision hinders the model’s ability to generalize to a range of programs. To

counter this the predictive model was extended with an additional feature containing a

static count of branching operations in a kernel.

4.7. Experimental Results 67

1 kernel

2 void fastWalshTransform(global float * tArray,

3 const int step

4)

5 {

6 unsigned int tid = get_global_id(0);

7

8 const unsigned int group = tid%step;

9 const unsigned int pair = 2*step*(tid/step) + group;

10

11 const unsigned int match = pair + step;

12

13 float T1 = tArray[pair];

14 float T2 = tArray[match];

15

16 tArray[pair] = T1 + T2;

17 tArray[match] = T1 - T2;

18 }

Listing 7: AMD’s Fast Walsh Transform benchmark kernel. In the Grewe, Wang, and

O’Boyle feature space this is indistinguishable from the CLgen program of Listing 8, but

has very different runtime behaviour and optimal device mapping. The addition of a

branching feature fixes this.

68 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

1 kernel void A(global float* a,

2 global float* b,

3 global float* c,

4 const int d) {

5 int e = get_global_id(0);

6 if (e < 4 && e < c) {

7 c[e] = a[e] + b[e];

8 a[e] = b[e] + 1;

9 }

10 }

Listing 8: In the Grewe, Wang, and O’Boyle feature space, this CLgen program is

indistinguishable from the AMD Fast Walsh–Hadamard transform benchmark kernel

of Listing 7, but has very different runtime behaviour and optimal device mapping. The

addition of a branching feature fixes this.

Figure 4.6 shows speedups of the model with the extended feature set across all

seven of the benchmark suites used in Section 4.2. Model performance, even on this

tenfold increase of benchmarks, is good. There are three benchmarks on which the

model performs poorly: MatrixMul, cutcp, and pathfinder. Each of those programs

makes heavy use of loops, which changes the dynamic behaviour of the programs in

ways that the static code features of the model are unlikely to capture. This could be

addressed by extracting dynamic instruction counts using profiling, but this is beyond

the scope of this work. It is not the aim of this work to perfect the predictive model but

to show the performance improvements associated with training on synthetic programs.

To this extent, the proposed approach is successful, achieving average speedups of

3.56× on AMD and 5.04× on NVIDIA across a very large test set.

4.7.3 Comparison of Source Features

As demonstrated in Section 4.2, the predictive quality of a model for a given point

in the feature space is improved with the addition of observations from neighbouring

points. By producing thousands of artificial programs modelled on the structure of real

OpenCL programs, CLgen is able to consistently and automatically generate programs

4.7. Experimental Results 69

Figure 4.6: Speedups of predictions using an extended model over Grewe, Wang, and

O’Boyle on both experimental platforms. Synthetic benchmarks and the additional pro-

gram features outperform the original predictive model by a factor 3.56× on AMD and

5.04× on NVIDIA.

70 Chapter 4. Improving the Performance of Predictive Models for Compiler Heuristics

0 2000 4000 6000 8000 10000

#. kernels

0

500

1000

1500

2000

2500

3000

3500

#
.
m

a
tc

h
e

s
GitHub

CLSmith

CLgen

Figure 4.7: The number of kernels from GitHub, CLSmith, and CLgen with static code

features matching the benchmarks. CLgen generates kernels that are closer in the fea-

ture space than CLSmith, and continues to do so long after the extent of the GitHub data

set is exhausted. Error bars show the standard deviation from 10 random samplings.

which are close in the feature space to the unseen benchmarks that are in the test set.

To quantify this effect, the static code features of Table 4.2a, plus the branching

feature discussed in the previous subsection, are used to measure the number of CLgen

kernels generated with the same feature values as those of the benchmarks examined

in the previous sections. Only static code features are examined to allow comparison

with the GitHub kernels for which there is no automated method to execute and extract

runtime features, and to enable comparison against code generated by CLSmith.

Figure 4.7 plots the number of exact feature vector matches as a function of the

number of kernels. Out of 10,000 unique CLgen kernels, more than a third have static

feature values matching those of the benchmarks, providing on average 14 CLgen

kernels for each benchmark. This supports the underlying intuition: CLgen kernels,

by emulating the way real humans write OpenCL programs, are concentrated in the

same area of the feature space as real programs. Moreover, since the number of CLgen

kernels that can be generated is unbounded, the exploration of the feature space can

be continually refined. This is not the case for GitHub, where the number of kernels

is finite. CLSmith rarely produces code similar to real-world OpenCL programs, with

only 0.53% of the generated kernels have matching feature values with benchmark

kernels. The unique contribution of CLgen is its ability to generate many thousands of

programs that are appropriate for predictive modelling.

4.8. Summary 71

4.8 Summary

The quality of predictive models is bounded by the quantity and quality of programs

used for training, yet there are typically only a few dozen common benchmarks avail-

able for experiments. This data scarcity challenge (Section 1.2.1) limits the applicabil-

ity of machine learning to compiler optimisations. This chapter presents a novel tool

which is the first of its kind — an entirely probabilistic program generator capable of

producing an unbounded number of human-like programs. The approach applies deep

learning over a huge corpus of publicly available code from GitHub to automatically

infer the syntactical properties and practical usage of a programming language.

The tool generates synthetic programs which to trained eyes are indistinguish-

able from handwritten code. The approach is tested using a state-of-the-art predic-

tive model, improving its performance by a factor of 1.27×. Synthetic benchmarks

automatically exposed weaknesses in the feature set which, when corrected, further

improved the performance by 4.30×.

Given the ability of generative models for performance characterisation, it is natu-

ral to hypothesise that a generator for unbounded programs may prove useful for com-

piler validation. Compared to benchmarking, compiler validation places very different

requirements for how the synthesised code fragments are used. The following chap-

ter presents techniques to adapt and extend the generative model to the challenging

domain of compiler test case generation.

Chapter 5

Lowering the Cost of Compiler

Validation

5.1 Introduction

Compilers should produce correct code for valid inputs, and meaningful errors for

invalid inputs. Failure to do so hinders software development and even causes catas-

trophic runtime errors. Still, properly testing compilers is hard. Modern optimising

compilers are large and complex programs, and their input space is huge. Hand-

designed suites of test programs, while important, are inadequate for covering such

a large space and will not touch all parts of the compiler.

Random test case generation — fuzzing — is a well-established and effective method

for identifying compiler bugs [Che+13; Che+16a; KP05]. When fuzzing, randomly

generated valid or semi-valid inputs are fed to the compiler. Any kind of unexpected

behaviour, including crashes, freezes, or wrong binaries, indicates a compiler bug.

While crashes and freezes in the compiler are easy to detect, determining that binaries

are correctly compiled is not generally possible without either developer provided val-

idation for the particular program’s behaviour or a gold standard compiler from which

to create reference outputs. In the absence of those, Differential Testing [McK98] can

be used. The generated code and a set of inputs form a test case which is compiled and

executed on multiple testbeds. If the test case should have deterministic behaviour, but

the output differs between testbeds, then a bug has been discovered.

Compiler fuzzing requires efficiently generating test cases that trigger compiler

bugs. The state-of-the-art approach, CSmith [Yan+11], generates large random pro-

grams by defining and sampling a probabilistic grammar which covers a subset of the

73

74 Chapter 5. Lowering the Cost of Compiler Validation

C programming language. Through this grammar, CSmith ensures that the generated

code easily passes the compiler front-end and stresses the most complex part of the

compiler, the middle-end. Complex static and dynamic analyses make sure that pro-

grams are free from undefined behaviour. The programs are then differentially tested.

While CSmith has been successfully used to identify hundreds of bugs in otherwise-

robust compilers, it and similar approaches have a significant drawback. They repre-

sent a huge undertaking and require a thorough understanding of the target program-

ming language. CSmith was developed over the course of years and consists of over

41k lines of handwritten C++ code. By tightly coupling the generation logic with the

target programming language, each feature of the grammar must be painstakingly and

expertly engineered for each new target language. For example, lifting CSmith from

C to OpenCL [Lid+15] — a superficially simple task — took 9 months and an addi-

tional 8k lines of code. Given the difficulty of defining a new grammar, typically only

a subset of the language is implemented.

This chapter introduces DeepSmith, a novel machine learning approach to accel-

erating compiler validation through the inference of generative models for compiler

inputs. DeepSmith is a fast, effective, and low effort approach to the generation of

random programs for compiler fuzzing. The methodology, extending the technique

developed in Chapter 4, uses recent advances in deep learning to automatically infer

probabilistic models of how humans write code, instead of painstakingly defining a

grammar to the same end. By training a deep neural network on a corpus of handwrit-

ten code, it is able to infer both the syntax and semantics of the programming language

and the common constructs and patterns. The approach essentially frames the gener-

ation of random programs as a language modelling problem. This greatly simplifies

and accelerates the process. The expressiveness of the generated programs is limited

only by what is contained in the corpus, not the developer’s expertise or available time.

Such a corpus can readily be assembled from open source repositories. Once trained,

the model is used to automatically generate tens of thousands of realistic programs.

Finally, established differential testing methodologies are used on them to expose bugs

in compilers.

In this chapter, the approach is applied to test compilers for the OpenCL program-

ming language. In 48 hours of automated testing of commercial and open source com-

pilers, bugs are discovered in all of them, and 67 bug reports are submitted. The

generated test cases are on average two orders of magnitude smaller than the state-

of-the-art, require 3.03× less time to generate and evaluate, and expose bugs which

5.2. DeepSmith: Compiler Fuzzing Through Deep Learning 75

the state-of-the-art cannot. The random program generator, comprising only 500 lines

of code, took 12 hours to train for OpenCL versus the state-of-the-art taking 9 man-

months to port from a generator for C and 50,000 lines of code. This work primarily

targets OpenCL, an open standard for programming heterogeneous systems, though

the approach is largely language-agnostic. OpenCL is chosen for three reasons: it is

an emerging standard with the challenging promise of functional portability across a

diverse range of heterogeneous hardware; OpenCL is compiled “online”, meaning that

even compiler crashes and freezes may not be discovered until a product is deployed to

customers; and there is already a hand written random program generator for the lan-

guage to compare against. With 18 lines of code, the program generator is extended to

a second language, uncovering crashes in Solidity compilers in 12 hours of automated

testing.

This chapter is organised as follows: Section 5.2 presents DeepSmith, a novel ap-

proach to compiler validation. Section 5.3 describes the experimental setup of an ex-

tensive evaluation of OpenCL compilers using DeepSmith. Section 5.4 evaluates the

results of the experiment, with Section 5.4.5 containing preliminary results support-

ing DeepSmith’s potential for multi-lingual compiler fuzzing. Section 5.5 provides

concluding remarks for this chapter.

5.2 DeepSmith: Compiler Fuzzing Through Deep

Learning

DeepSmith is an open source framework for compiler fuzzing. Figure 5.1 provides

a high-level overview. This section describes the three key components: a genera-

tive model for random programs, a test harness, and voting heuristics for differential

testing.

5.2.1 Generative Model

Generating test cases for compilers is hard because their inputs are highly structured.

Producing text with the right structure requires expert knowledge and a significant en-

gineering effort, which has to be repeated from scratch for each new language. Instead,

the proposed approach frames the problem as an unsupervised machine learning task,

extending prior work of Chapter 4 in employing state-of-the-art deep learning tech-

niques to build models for how humans write programs. The approach is inspired by

76 Chapter 5. Lowering the Cost of Compiler Validation

Figure 5.1: DeepSmith system overview. Handwritten programs are used to derive a

generative model; from which code samples are produced and parameterised to make

test cases. Test cases are broadcast to multiple testbeds, and voting heuristics used to

determine the testbeds that deviate from the majority, exposing anomalous results.

5.2. DeepSmith: Compiler Fuzzing Through Deep Learning 77

breakthrough results in modelling challenging and high dimensional data sets through

unsupervised learning [Bow+16; Rag+17; RJS17]. Contrary to existing tools, this ap-

proach does not require expert knowledge of the target language and is only a few

hundred lines of code.

Handwritten Programs The generative model needs to be trained on a seed cor-

pus of example programs. The assembly of this corpus is automated by mining 10k

OpenCL kernels from open source repositories on GitHub. An oracle compiler (LLVM

3.9) is used to statically check each downloaded source file, discarding files that are

not well-formed. The main purpose of this step is to remove the need to manually

check that each file selected from GitHub does indeed contain OpenCL. A downside is

that any training candidate which triggers a bug in the LLVM 3.9’s front end will not

be included. However, this did not prevent the system from uncovering errors in that

compiler (Section 5.4.4).

This corpus, exceeding one million lines of code, is used as a representative sample

of OpenCL code from which a generative model can be derived.

As in Chapter 4, semantics-preserving transformations are employed to simplify

the training programs. First, each source file is preprocessed to expand macros and

remove conditional compilation and comments. Then, all user-declared identifiers are

renamed using an arbitrary, but consistent pattern based on their order of declaration:

{a,b,c, . . . ,aa,ab,ac, . . .} for variables and {A,B,C, . . . ,AA,AB,AC, . . .} for functions.

This ensures a consistent naming convention, without modifying program behaviour.

Finally, a uniform code style is enforced to ensure consistent use of braces, parenthe-

ses, and white space. These rewriting simplifications give more opportunities for the

model to learn the structure and deeper aspects of the language and speed up the learn-

ing. On the other hand, some bugs in the preprocessor or front-end might no longer

be discoverable. For the purpose of fuzzing OpenCL compilers, this was reasoned as

an acceptable trade-off. For languages where the corpus may be many orders of mag-

nitude larger, for example, C or Java, it may be possible to construct effective models

without these modifications.

Encoder Source code is encoded as a sequence of integers for interpretation by ar-

tificial neural networks, where each integer is an index into a predetermined vocab-

ulary. In [Joz+16], a character based vocabulary is used. This minimises the size

of the vocabulary but leads to long sequences which are harder to extract structure

78 Chapter 5. Lowering the Cost of Compiler Validation

Algorithm 2 Deriving a hybrid token- and character-level vocabulary from a string.
Require: Candidate vocabulary Vc, string S.

Ensure: Vocabulary V .

1: V ←∅ . Initialise empty derived vocabulary

2: i← 1

3: while S 6= “′′ do . While input not fully processed

4: i← i+1 . Advance to next character

5: c← [S(1), . . . ,S(i)] . Read token from input

6: if !IsValidPre f ix(c,Vc) then . If token is not legal

7: c← FindLongestSubstring(c,Vc) . Revert to last legal token

8: S← [S(|c|), . . . ,S(|S|)] . Pop token from input

9: V ←V ∪{c} . Add token to vocabulary

10: i← 1

11: end if
12: end while

from. In [AS13], a token based vocabulary is used. This leads to shorter sequences,

but causes an explosion in the vocabulary size, as every identifier and literal must be

represented uniquely.

A hybrid, partially tokenised vocabulary approach is developed. This allows com-

mon multi-character sequences such as float and if to be represented as unique vo-

cabulary items, while literals and other infrequently used words are encoded at the

character level.

First, a candidate vocabulary Vc is assembled for the OpenCL programming lan-

guage containing the 208 data types, keywords, and language builtins of the OpenCL

programming language. From this, the subset of the candidate vocabulary V ∈ Vc

which is required to encode a corpus of 45k lines of GPGPU benchmark suite kernels

is derived. Beginning with the first character in the corpus, the algorithm consumes

the longest matching sequence from the candidate vocabulary. This process continues

until every character in the corpus has been consumed, illustrated in Algorithm 2. The

resulting derived vocabulary consists of 128 symbols which are used to encode new

program sources.

Neural Network The Long Short-Term Memory (LSTM) architecture of Recurrent

Neural Network is used to model program code [HS97]. In the LSTM architecture ac-

5.2. DeepSmith: Compiler Fuzzing Through Deep Learning 79

tivations are learned with respect not just to their current inputs but to previous inputs

in a sequence. In this case, this allows modelling the probability of a token appearing

in the text given a history of previously seen tokens. Unlike previous recurrent net-

works, LSTMs employ a forget gate with a linear activation function, allowing them to

avoid the vanishing gradients problem [PMB13]. This makes them effective at learning

complex relationships over long sequences [LBE15] which is important for modelling

program code. Extending the character-based model of Chapter 4, LSTM networks are

employed to model the token-vocabulary distribution over the encoded corpus.

Compared to prior character-based models, the hybrid token vocabulary caused

models to respond differently to model parameters. Initial experiments using different

model parameters revealed that a two-layer LSTM network of 512 nodes per layer

provided a good trade-off between the fidelity of the learned distribution and the size

of the network, which limits the rate of training and inference. The network is trained

using Stochastic Gradient Descent for 50 epochs, with an initial learning rate of 0.002

and decaying by 5% every epoch. Training the model on the OpenCL corpus took 12

hours using a single NVIDIA Tesla P40. The model is given no prior knowledge of the

structure or syntax of a programming language.

Program Generation The trained network is sampled to generate new programs.

The model is seeded with the start of a kernel (identified in OpenCL using the keywords

kernel void) and sampled token-by-token. A “bracket depth” counter is incremented

or decremented upon production of { or } tokens respectively so that the end of the

kernel is detected and sampling halted. Unlike in Chapter 4, there is no support for

forcing kernel specifications, and there is no upper bound on the length of a sample.

The generated sequence of tokens is then decoded back to text and used for compiler

testing.

5.2.2 Test Harness

OpenCL is an embedded compute kernel language, requiring host code to compile,

execute, and transfer data between the host and device. For the purpose of compiler

fuzzing, this requires a test harness to run the generated OpenCL programs. At first,

the test harness of CLSmith was used. The harness assumes a kernel with no input and

a ulong buffer as its single argument where the result is written. Only 0.2% of the

GitHub kernels share this structure. A more flexible harness was desired so as to test a

80 Chapter 5. Lowering the Cost of Compiler Validation

more expressive range of programs, capable of supporting multi-argument kernels and

generating data to use as inputs.

A new harness was developed, extending CLdrive, which first determines the ex-

pected arguments from the function prototype and generates host data for them. At the

moment, scalars and arrays of all OpenCL primitive and vector types are supported.

For a kernel execution across n threads, buffers of size n are allocated for pointer ar-

guments and populated with values [1 . . .n]; scalar inputs are given value n since scalar

integer arguments are frequently used in OpenCL for specifying buffer sizes.

The training programs from which the generative model is created are real pro-

grams, and as such do not share the argument type restrictions. The model, therefore,

may generate correct programs for which the driver cannot create example inputs. In

this case, a “compile-only” stub is used, which only compiles the kernel, without gen-

erating input data or executing the compiled kernel.

Unlike the generative model, this test harness is language-specific and the design

stems from domain knowledge. Still, it is a relatively simple procedure, consisting of

a few hundred lines of Python.

Test Harness Output Classes Executing a test case on a testbed leads to one of

seven possible outcomes, illustrated in Figure 5.2. A build failure occurs when the

online compilation of an OpenCL kernel fails, usually accompanied by an error diag-

nostic. A build crash or build timeout outcome occurs if the compiler crashes or fails

to produce a binary within 60 seconds, respectively. For compile-only test cases, a

pass is achieved if the compiler produces a binary. For test cases in which the kernel is

executed, kernel execution leads to one of three potential outcomes: runtime crash if

the program crashes, timeout if the kernel fails to terminate within 60 seconds, or pass

if the kernel terminates gracefully and computes an output.

5.2.3 Voting Heuristics for Differential Testing

Established Differential Testing methodologies are employed to expose compiler de-

fects. As in prior work, voting on the output of programs across compilers has been

used to circumvent the oracle problem and detect miscompilations [McK98]. How-

ever, this approach is extended to describe not only miscompilations, but also anoma-

lous build failures and crashes.

5.2. DeepSmith: Compiler Fuzzing Through Deep Learning 81

Figure 5.2: Test case execution, and possible results. Generating and executing a test

case leads to one of six possible outcomes. Of these, build crashes and build timeouts

are considered errors. In the remaining four cases, differential testing may be used to

determine if the outcome is anomalous.

82 Chapter 5. Lowering the Cost of Compiler Validation

When evaluating the outcomes of test cases, build crash (bc) and build timeout

(bto) outcomes are of immediate interest, indicative of erroneous compiler behaviour

(examples may be found in Section 5.4.1). For all other outcomes, differential tests are

required to confirm anomalous behaviour. The idea is to identify test cases where there

is a majority outcome – i.e. for which some fraction of the testbeds behaves the same

– but some testbed deviates. The presence of the majority increases the likelihood that

there is a ‘correct’ behaviour for the test case. In this work, a majority fraction of d2
3ne

is used, where n is the number of testbeds.

An anomalous build failure (abf) or anomalous runtime crash (arc) occurs if, for

a given test case, the majority of testbeds execute successfully, and a testbed yields a

compilation error or runtime crash. An anomalous wrong-output (awo) occurs if, for

a given test case, the majority of testbeds execute successfully, producing the same

output values, and a testbed yields a result which differs from this majority output.

Anomalous wrong-output results are indicative of miscompilations, a particularly hard

to detect class of bug in which the compiler silently emits wrong code. CSmith is

designed specifically to target this class of bug.

False Positives for Anomalous Runtime Behaviour Generated programs may con-

tain undefined or non-deterministic behaviour which will incorrectly be labelled as

anomalous. CSmith circumvents this problem by performing complex analyses dur-

ing generation so as to minimise the chance of producing programs with undefined

behaviour. Although similar analyses could be created as filters for DeepSmith, a sim-

pler approach is taken, filtering only the few types of undefined and non-deterministic

behaviour that have been actually observed to happen in practice.

Data races, out-of-bounds and uninitialised accesses are filtered using GPUver-

ify [BCD12] and Oclgrind [PM15]. Some compiler warnings provide a strong indi-

cation of undefined behaviour (e.g. comparison between pointer and integer) – these

warnings are checked for and filtered accordingly.

Floating point operations in OpenCL are imprecise, so kernels can produce differ-

ent output on different testbeds. For this reason, CSmith and CLSmith do not support

floating point operations. DeepSmith permits floating point operations but since it

cannot apply differential testing on the outputs, it can detect all results except for the

anomalous wrong-output results.

The last type of undefined behaviour observed comes from division by zero and

related mathematical functions which require non-zero values. A simple detection and

5.3. Experimental Setup 83

filtering heuristic was applied – the input values are changed and the output is checked

to see if it remains anomalous. While theoretically insufficient, in practice no false

positives have been found to remain.

5.3 Experimental Setup

This section describes the experimental parameters used for a testing campaign of

OpenCL compilers.

5.3.1 OpenCL Systems

Testing was conducted on 10 OpenCL systems, summarised in Table 5.1. A broad

range of hardware was covered: 3 GPUs, 4 CPUs, a co-processor, and an emulator.

7 of the compilers tested are commercial products, 3 of them are open source. This

suite of systems includes both combinations of different drivers for the same device,

and different devices using the same driver.

5.3.2 Testbeds

For each OpenCL system, two testbeds are created. In the first, the compiler is run

with optimisations disabled. In the second, optimisations are enabled. Each testbed is

then a triple, consisting of <device, driver, is optimised> settings. This mechanism

gives 20 testbeds to evaluate.

5.3.3 Test Cases

Inputs are created for each generated program as described in Section 5.2.2. The test

harness is parameterised by a number of threads to use. Two test cases are gener-

ated, one using one thread, the other using 2048 threads. A test case is then a triple,

consisting of <program, inputs, threads> settings.

5.3.4 Bug Search Time Allowance

DeepSmith and CLSmith are compared by allowing both to run for 48 hours on each

of the 20 testbeds. CLSmith used its default configuration. The total runtime for a test

case consists of the generation and execution time.

84 Chapter 5. Lowering the Cost of Compiler Validation

#. Platform Device Driver OpenCL

1 NVIDIA CUDA GeForce GTX 1080 375.39 1.2

2 NVIDIA CUDA GeForce GTX 780 361.42 1.2

3 Beignet Intel HD Haswell GT2 1.3 1.2

4 Intel OpenCL Intel E5-2620 v4 1.2.0.25 2.0

5 Intel OpenCL Intel E5-2650 v2 1.2.0.44 1.2

6 Intel OpenCL Intel i5-4570 1.2.0.25 1.2

7 Intel OpenCL Intel Xeon Phi 1.2 1.2

8 POCL POCL (Intel E5-2620) 0.14 1.2

9 Codeplay ComputeAorta (Intel E5-2620) 1.14 1.2

10 Oclgrind Oclgrind Simulator 16.10 1.2

(a)

#. Operating system Device Type
Open

Source?
Bug Reports

Submitted

1 Ubuntu 16.04 64bit GPU 8

2 openSUSE 13.1 64bit GPU 1

3 Ubuntu 16.04 64bit GPU Yes 13

4 Ubuntu 16.04 64bit CPU 6

5 CentOS 7.1 64bit CPU 1

6 Ubuntu 16.04 64bit CPU 5

7 CentOS 7.1 64bit Accelerator 3

8 Ubuntu 16.04 64bit CPU Yes 22

9 Ubuntu 16.04 64bit CPU 1

10 Ubuntu 16.04 64bit Emulator Yes 7

(b)

Table 5.1: OpenCL systems and the number of bug reports submitted to date (22% of

which have been fixed, the remainder are pending). For each system, two testbeds are

created, one with compiler optimisations, the other without.

5.4. Evaluation 85

5.4 Evaluation

This section reports on the results of DeepSmith testing of the 10 OpenCL systems

from Table 5.1, in which each ran for 48 hours. Bugs were found in all the compil-

ers tested — every compiler crashed, and every compiler generated programs which

either crash or silently compute the wrong result. To date, 67 unique bug reports have

been submitted to compiler vendors. This section first contains a qualitative analy-

sis of compile-time and runtime defects found, followed by a quantitative compari-

son of the approach against the state-of-the-art in OpenCL compiler fuzzing — CL-

Smith [Lid+15]. DeepSmith is able to identify a broad range of defects, many of which

CLSmith cannot, for only a fraction of the engineering effort. Finally, this section con-

tains a quantitative analysis of compiler robustness over time, using the compiler crash

rate of every LLVM release in the past two years as a metric of compiler robustness.

The findings show that progress is good, compilers are becoming more robust, yet the

introduction of new features and regressions ensures that compiler validation remains

a moving target.

Unless stated otherwise, DeepSmith code listings are presented verbatim, with only

minor formatting changes applied to preserve space. No test case reduction, either

manual or automatic, was needed.

For the remainder of this chapter, testbeds are identified using the OpenCL system

number from Table 5.1, suffixed with +, −, or ± to denote optimisations on, off, or

either, respectively.

5.4.1 Compile-time Defects

OpenCL is typically compiled online, which amplifies the significance of detecting

compile-time defects, as they may not be discovered until code has been shipped to

customers. Numerous cases were found where DeepSmith kernels trigger a crash in

the compiler (and as a result, the host process), or cause the compiler to loop indefi-

nitely. In the testing time allotted, DeepSmith uncovered 199 unique unreachable code

failures, 31 different compiler assertions, and 114 distinct stack traces caused by other

compiler crashes.

86 Chapter 5. Lowering the Cost of Compiler Validation

1 void A(){(global a*)()

(a) Reduced from 48 line kernel.

1 void A(){void* a; uint4 b=0; b=(b>b)?a:a

(b) Reduced from 52 line kernel.

1 void A(){double2 k; return (float4)(k,k,k,k)

(c) Reduced from 68 line kernel.

Figure 5.3: Example codes which crash OpenCL compilers during parsing.

5.4.1.1 Semantic Analysis Failures

Compilers should produce meaningful diagnostics when inputs are invalid, yet dozens

of compiler defects were discovered attributable to improper or missing error handling.

Many generation and mutation based approaches to compiler validation have focused

solely on testing under valid inputs. As such, this class of bugs may go undiscovered.

Compared to these approaches, DeepSmith may contribute a significant improvement

for generating plausibly-erroneous code over prior random-enumeration approaches.

The use of undeclared identifiers is a core error diagnostic which one would expect

to be robust in a mature compiler. DeepSmith discovered cases in which the presence

of undeclared identifiers causes the Testbeds 10± compiler to crash. For example, the

undeclared identifier c in Figure 5.4a raises an assertion during semantic analysis of

the AST when used as an array index.

Type errors were an occasional cause of compile-time defects. Figure 5.4b induces

a crash in NVIDIA compilers due to an implicit conversion between global to con-

stant address qualifiers. Worse, Testbeds 3± were found to loop indefinitely on some

kernels containing implicit conversions from a pointer to an integer, as shown in Fig-

ure 5.5a. While spinning, the compiler would utilise 100% of the CPU and consume

an increasing amount of host memory until the entire system memory is depleted and

the process crashes.

Occasionally, incorrect program semantics will remain undetected until late in the

compilation process. Both Figures 5.4c and 5.4d pass the type checker and semantic

analysis, but trigger compiler assertions during code generation.

5.4. Evaluation 87

1 kernel void A(global float* a, global float* b) {

2 a[0] = max(a[c], b[2]);

3 }

(a) Testbeds 10± assertion “Uncorrected typos!” during semantic analysis.

1 kernel void A(float4 a, global float4* b,

2 global float4* c, unsigned int d,

3 global double* e, global int2* f,

4 global int4* g, constant int* h,

5 constant int* i) {

6 A(a, b, c, d, d, e, f, g, h);

7 }

(b) Testbeds 1±, 2± segmentation fault due to implicit address space conversion.

1 kernel void A(read_only image2d_t a,

2 global double2* b) {

3 b[0] = get_global_id(0);

4 }

(c) Testbeds 3± assertion sel.hasDoubleType() during code generation.

1 kernel void A(global float4* a) {

2 a[get_local_id(0) / 8][get_local_id(0)] =

3 get_local_id(0);

4 }

(d) Testbeds 3± assertion scalarizeInsert during code generation.

1 kernel void A() {

2 __builtin_astype(d, uint4);

3 }

(e) Of the 10 compilers tested, 6 crash with segfault when compiling this kernel.

Figure 5.4: Example OpenCL kernels which crash compilers.

88 Chapter 5. Lowering the Cost of Compiler Validation

An interesting yet unintended by-product of having trained DeepSmith on thou-

sands of real-world examples is that the model learned to occasionally generate compiler-

specific code, such as invoking compiler intrinsics. The quality of error handling on

these builtins was found to vary wildly. For example, Figure 5.4e silently crashes

6 of the 10 compilers, which, to the best of my knowledge, makes DeepSmith the

first random program generator to induce a defect through exploiting compiler-specific

functionality.

5.4.1.2 Parser Failures

Parser development is a mature and well-understood practice. Still, parser errors were

discovered in several compilers. Each of the code samples in Figure 5.3 induce crash

errors during parsing of compound statements in both Testbeds 5± and 7±. For space,

the listings have been hand-reduced to minimal code samples, which have been re-

ported to Intel. Each reduction took around 6 edit-compile steps, taking less than 10

minutes. In total, 100 distinct programs have been generated which crash compilers

during parsing.

5.4.1.3 Compiler Hangs

As expected, some compile-time defects are optimisation sensitive. Testbed 1+ hangs

on large loop bounds, shown in Figure 5.5b. All of the Intel compilers tested hang

during optimisation of non-terminating loops (Figure 5.5d).

Testbeds 7± loop indefinitely during compilation of the simple OpenCL kernel in

Figure 5.5c.

5.4.1.4 Other errors

Some compilers are more permissive than others. Testbeds 4±, 6±, 9± reject out-of-

range literal values e.g. int i = 0xFFFFFFFFFFFFFFFFFFFFFFFF, whilst Testbeds

3±, 5±, 7±, 8±, and 10± interpret the literal as an unsigned long long and im-

plicitly cast to an integer value of -1. Testbeds 1±, 2± emit no warning.

Testbeds 1±, 2±, 3± rejected address space qualifiers on automatic variables,

where all other testbeds successfully compiled and executed.

On Testbeds 3±, the statement int n = mad24(a, (32), get global size(0));

(a call to a maths builtin with mixed types) is rejected as ambiguous.

5.4. Evaluation 89

1 kernel void A(global int* a) {

2 int b = get_global_id(0);

3 a[b] = (6 * 32) + 4 * (32 / 32) + a;

4 }

(a) Testbeds 3± loop indefinitely, leaking memory until the entire system memory is depleted and the

process crashes.

1 kernel void A(global float* a, global float* b,

2 global float* c) {

3 int d, e, f;

4 d = get_local_id(0);

5 for (int g = 0; g < 100000; g++)

6 barrier(1);

7 }

(b) Testbed 1+ hangs during optimisation of kernels with large loop bounds. Testbeds 1− and 2±
compile in under 1 second.

1 kernel void A(global unsigned char* a,

2 unsigned b) {

3 a[get_global_id(0)] %= 42;

4 barrier(1);

5 }

(c) Testbeds 7± loops indefinitely, consuming 100% CPU usage.

1 kernel void A(global int* a) {

2 int b = get_global_id(0);

3 while (b < 512) { }

4 }

(d) Testbeds 4+, 5+, 6+, 7+ hang during optimisation of kernels with non-terminating loops.

Figure 5.5: Example OpenCL kernels which hang compilers.

90 Chapter 5. Lowering the Cost of Compiler Validation

1 kernel void A(global double* a, global double* b,

2 global double* c, int d, int e) {

3 double f;

4 int g = get_global_id(0);

5 if (g < e - d - 1)

6 c[g] = (((e) / d) % 5) % (e + d);

7 }

(a) Testbeds 4+, 6+ incorrectly optimise the if statement, causing the conditional branch to execute

(when it shouldn’t). This pattern of integer comparison to thread ID is widely used.

1 kernel void A(global int* a, global int* b) {

2 switch (get_global_id(0)) {

3 case 0:

4 a[get_global_id(0)]=b[get_global_id(0)+13];

5 break;

6 case 2:

7 a[get_global_id(0)]=b[get_global_id(0)+11];

8 break;

9 case 6:

10 a[get_global_id(0)]=b[get_global_id(0)+128];

11 }

12 barrier(2);

13 }

(b) A race condition in switch statement evaluation causes 10± to sporadically crash when executed

with a number of threads > 1.

Figure 5.6: Example OpenCL kernels which are miscompiled.

5.4. Evaluation 91

1 kernel void A(global int* a, global int* b,

2 global int* c) {

3 c[0] = (a[0] > b[0]) ? a[0] : 0;

4 c[2] = (a[3] <= b[3]) ? a[4] : b[5];

5 c[4] = (a[4] <= b[5]) ? a[7] : b[7];

6 c[7] = (a[7] < b[0]) ? a[0] : (a[0] > b[1]);

7 }

(a) Testbeds 3± silently miscompile ternary assignments in which the operands are different global

buffers.

1 kernel void A(local int* a) {

2 for (int b = 0; b < 100; b++)

3 B(a);

4 }

(b) Compilation should fail due to call to undefined function B(); Testbeds 8± silently succeed then

crash upon kernel execution.

Figure 5.7: Further example OpenCL kernels which are miscompiled.

92 Chapter 5. Lowering the Cost of Compiler Validation

5.4.2 Runtime Defects

Prior work on compiler test case generation has focused on extensive stress-testing of

compiler middle-ends to uncover miscompilations [Che+16a]. CSmith, and by exten-

sion, CLSmith, specifically targets this class of bugs. Grammar-based enumeration

is highly effective at this task, yet is bounded by the expressiveness of the grammar.

Here, examples are provided of bugs found by DeepSmith which cannot currently be

discovered by CLSmith.

5.4.2.1 Thread-dependent Flow Control

A common pattern in OpenCL is to obtain the thread identity, often as an int, and to

compare this against some fixed value to determine whether or not to complete a unit

of work (46% of OpenCL kernels on GitHub use this (tid → int, if (tid < ...)

{...}) pattern). DeepSmith, having modelled the frequency with which this pattern

occurs in real handwritten code, generates many permutations of this pattern. And in

doing so, exposed a bug in the optimiser of Testbeds 4+ and 6+ which causes the if

branch in Figure 5.6a to be erroneously executed when the kernel is compiled with

optimisations enabled. This issue has been reported to Intel. CLSmith does not permit

the thread identity to modify control flow, rendering such productions impossible.

Figure 5.6b shows a simple program in which thread identity determines the pro-

gram output. This test case was found to sporadically crash Testbeds 10±, an OpenCL

device simulator and debugger. Upon reporting to the developers, the underlying cause

was quickly diagnosed as a race condition in switch statement evaluation and fixed

within a week.

5.4.2.2 Kernel Inputs

CLSmith kernels accept a single buffer parameter into which each thread computes its

result. This fixed prototype limits the ability to detect bugs which depend on input

arguments. Figure 5.7a exposes a bug of this type. Testbeds 3± will silently miscom-

pile ternary operators when the ternary operands consist of values stored in multiple

different global buffers. CLSmith, with its fixed single input prototype, is unable to

discover this bug.

5.4. Evaluation 93

5.4.2.3 Latent Compile-time Defects

Sometimes, invalid compiler inputs may go undetected, leading to runtime defects only

upon program execution. Since CLSmith enumerates only well-formed programs, this

class of bugs cannot be discovered.

Figure 5.7b exposes a bug in which a kernel containing an undefined symbol will

successfully compile without warning on Testbeds 8±, then crash the program when

attempting to run the kernel. This issue has been reported to the developers and fixed.

5.4.3 Comparison to State-of-the-art

This section provides a quantitative comparison of the bug-finding capabilities of Deep-

Smith and CLSmith.

5.4.3.1 Results Overview

Tables 5.2 and 5.3 shows the results of 48 hours of consecutive testing for all Testbeds

using CLSmith and DeepSmith, respectively. An average of 15k CLSmith and 91k

DeepSmith test cases were evaluated on each Testbed, taking 12.1s and 1.90s per test

case respectively. There are three significant factors providing the sixfold increase in

testing throughput achieved by DeepSmith over CLSmith: test cases are faster to gen-

erate, test cases are less likely to timeout (execute for 60 seconds without termination),

and the test cases which do not timeout execute faster.

Figure 5.8a shows the generation and execution times of DeepSmith and CLSmith

test cases, excluding timeouts1. DeepSmith generation time grows linearly with pro-

gram length and is on average 2.45× faster than CLSmith. Test case execution is on

average 4.46× faster than CLSmith.

The optimisation level generally does not affect testing throughput significantly,

with the exception of Testbed 7+. Optimisation of large structs is expensive on Testbed 7+,

and CLSmith test cases use global structs extensively. This is a known issue —

in [Lid+15] the authors omit large-scale testing on this device for this reason. The

use of structs in handwritten OpenCL is comparatively rare — only 7.1% of kernels on

GitHub use them.

1If timeouts are included then the performance improvement of DeepSmith is 6.5× with the execu-
tion times being 11× faster. However, this number grows as the arbitrary timeout threshold is changed,
so for fairness timeouts have been excluded.

94 Chapter 5. Lowering the Cost of Compiler Validation

#. Device ± bc bto abf arc awo 3 total

− 0 0 0 2 2 15628 15632
1 GeForce GTX 1080

+ 0 71 0 6 9 14007 14093

− 0 0 0 28 5 18220 18253
2 GeForce GTX 780

+ 26 14 0 0 3 17654 17697

− 2714 2480 0 0 3 1121 6318
3 Intel HD Haswell GT2

+ 2646 2475 0 0 3 1075 6199

− 0 27 1183 0 0 16313 17523
4 Intel E5-2620 v4

+ 487 87 1130 0 0 17350 19054

− 0 11 0 0 0 17887 17898
5 Intel E5-2650 v2

+ 112 175 0 0 0 14626 14913

− 0 14 1226 0 0 17118 18358
6 Intel i5-4570

+ 526 63 1180 0 0 19185 20954

− 4 84 0 0 8 13265 13361
7 Intel Xeon Phi

+ 42 1474 0 0 2 3258 4776

− 0 0 0 675 0 17250 17925
8 POCL (Intel E5-2620)

+ 0 3 0 99 5 13980 14087

− 0 0 0 0 0 18479 18479
9 ComputeAorta

+ 0 0 0 300 11 18625 18936

− 0 0 0 0 0 5287 5287
10 Oclgrind Simulator

+ 0 0 0 0 0 5334 5334

Table 5.2: Results from 48 hours of testing using CLSmith. System #. as per Table 5.1.

± denotes optimisations off (−) vs on (+). The remaining columns denote the num-

ber of build crash (bc), build timeout (bto), anomalous build failure (abf), anomalous

runtime crash (arc), anomalous wrong-output (awo), and pass (3) results.

5.4. Evaluation 95

#. Device ± bc bto abf arc awo 3 total

− 27 0 3 0 5 62105 62140
1 GeForce GTX 1080

+ 20 1 1 0 7 57361 57390

− 27 0 3 0 9 87129 87168
2 GeForce GTX 780

+ 32 1 1 0 9 82666 82709

− 574 200 2 0 12 136977 137765
3 Intel HD Haswell GT2

+ 569 200 5 0 10 135430 136214

− 57 0 9 1 0 107982 108049
4 Intel E5-2620 v4

+ 320 147 7 3 0 113616 114093

− 152 2 0 0 0 90882 91036
5 Intel E5-2650 v2

+ 170 117 0 0 1 90478 90766

− 73 0 9 2 1 111240 111325
6 Intel i5-4570

+ 318 140 7 2 1 117049 117517

− 68 4 0 0 1 37171 37244
7 Intel Xeon Phi

+ 77 47 0 0 0 37501 37625

− 54 1 2 89 3 85318 85467
8 POCL (Intel E5-2620)

+ 46 0 1 104 4 81267 81422

− 51 0 1 3 1 112324 112380
9 ComputeAorta

+ 59 0 0 48 4 115323 115434

− 2081 0 0 0 1 73261 75343
10 Oclgrind Simulator

+ 2265 0 0 0 0 77959 80224

Table 5.3: Results from 48 hours of testing using DeepSmith. System #. as per Ta-

ble 5.1. ± denotes optimisations off (−) vs on (+). The remaining columns denote the

number of build crash (bc), build timeout (bto), anomalous build failure (abf), anoma-

lous runtime crash (arc), anomalous wrong-output (awo), and pass (3) results.

96 Chapter 5. Lowering the Cost of Compiler Validation

Figure 5.8: Comparison of runtimes (a) and test case sizes (b). DeepSmith test cases

are on average evaluated 3.03× faster than CLSmith (2.45×, and 4.46× for generation

and execution, respectively), and are two orders of magnitude smaller. Timings do not

include the cost of timeouts which would increase the performance gains of DeepSmith

by nearly a factor of two.

5.4.3.2 Comparison of Test Cases

The average CLSmith program is 1189 lines long (excluding headers). CLSmith test

cases require reduction in order to expose the underlying bug. An automated approach

to OpenCL test case reduction is presented in [PDL16], though it requires on average

100 minutes for each test case using a parallelised implementation (and over 6 hours

if this parallelisation is not available); still, the authors suggest a final manual pass

after automated reduction. In contrast, DeepSmith learned to program from humans,

and humans do not typically write such large kernel functions. The average Deep-

Smith kernel is 20 lines long, which is interpretable without reduction, either manual

or automatic.

5.4.3.3 Comparison of Results

Both testing systems found anomalous results of all types. In 48 hours of testing, CL-

Smith discovered compile-time crashes (bc) in 8 of the 20 testbeds, DeepSmith crashed

all of them. DeepSmith triggered 31 distinct compiler assertions, CLSmith 2. Both of

the assertions triggered by CLSmith were also triggered by DeepSmith. DeepSmith

5.4. Evaluation 97

also triggered 3 distinct unreachable! compile-time crashes, CLSmith triggered 0.

The ratio of build failures is higher in the token-level generation of DeepSmith (51%)

than the grammar-based generation of CLSmith (26%).

The Intel CPU Testbeds (4±, 5±, 6±, and 7±) would occasionally emit a stack

trace upon crashing, identifying the failure point in a specific compiler pass. CLSmith

triggered such crashes in 4 distinct passes. DeepSmith triggered crashes in 10 distinct

passes, including 3 of the 4 in which CLSmith did. Figures 5.9 and 5.10 provide

examples. Many of these crashes are optimisation sensitive and are more likely to

occur when optimisations are enabled. CLSmith was able to induce a crash in only

one of the Intel testbeds with optimisations disabled. DeepSmith crashed all of the

compilers with both optimisations enabled and disabled.

CLSmith produced many bto results across 13 Testbeds. Given the large kernel

size, it is unclear how many of those are infinite loops or simply a result of the slow

compilation of large kernels. The average size of CLSmith bto kernels is 1558 lines.

Automated test case reduction — in which thousands of permutations of a program are

executed — may be prohibitively expensive for test cases with long runtimes. Deep-

Smith produced bto results across 11 Testbeds and with an average kernel size of 9

lines, allowing for rapid identification of the underlying problem.

The integrated GPU Testbeds (3±) frequently failed to compile CLSmith kernels,

resulting in over 10k bc and bto results. Of the build crashes, 68% failed silently, and

the remainder were caused by the same two compiler assertions for which DeepSmith

generated 4 line test cases, shown in Figure 5.11. DeepSmith also triggered silent build

crashes in Testbeds 3±, and a further 8 distinct compiler assertions.

The 4719 abf results for CLSmith on Testbeds 4± and 6± are all a result of com-

pilers rejecting empty declarations, (e.g. int;) which CLSmith occasionally emits.

DeepSmith also generated these statements, but with a much lower probability, given

that it is an unusual construct (0.6% of test cases, versus 7.0% of CLSmith test cases).

ComputeAorta (Testbeds 9±) defers kernel compilation to enable optimisations

dependent on runtime parameters. This may contribute to the relatively large number

of arc results and few bc results of Testbeds 9±. Only DeepSmith was able to expose

compile-time defects in this compiler.

Over the course of testing, a combined 3.4×108 lines of CLSmith code was eval-

uated, compared to 3.8× 106 lines of DeepSmith code. This provides CLSmith with

a greater potential to trigger miscompilations. CLSmith generated 33 programs with

anomalous wrong-outputs. DeepSmith generated 30.

98 Chapter 5. Lowering the Cost of Compiler Validation

1 kernel void A() {

2 while (true)

3 barrier(1);

4 }

(a) Post-Dominance Frontier Construction pass.

1 kernel void A(global float* a, global float* b,

2 const int c) {

3 for (int d = 0; d < c; d++)

4 for (d = 0; d < a; d += 32)

5 b[d] = 0;

6 }

(b) Simplify the CFG pass.

1 kernel void A(global int* a) {

2 int b = get_global_id(0);

3 while (b < *a)

4 if (a[0] < 0)

5 a[1] = b / b * get_local_id(0);

6 }

(c) Predicator pass.

1 kernel void A(global float* a, global float* b,

2 global float* c, const int d) {

3 for (unsigned int e = get_global_id(0);

4 e < d; e += get_global_size(0))

5 for (unsigned f = 0; f < d; ++f)

6 e += a[f];

7 }

(d) Combine redundant instructions pass.

Figure 5.9: Example OpenCL kernels which crash Intel compiler passes.

5.4. Evaluation 99

1 kernel void A(int a, global int* b) {

2 int c = get_global_id(0);

3 int d = work_group_scan_inclusive_max(c);

4 b[c] = c;

5 }

(a) PrepareKernelArgs pass.

1 kernel void A() {

2 local float a; A(a);

3 }

(b) Add SPIR related module scope metadata pass.

1 kernel void A() {

2 local int a[10];

3 local int b[16][16];

4 a[1024 + (2 * get_local_id(1) +

5 get_local_id(0)) + get_local_id(0)] = 6;

6 barrier(b);

7 }

(c) Intel OpenCL RemoveDuplicationBarrier pass.

1 kernel void A(global half* a) {

2 int b = get_global_id(0);

3 a[b] = b * b;

4 }

(d) X86 DAG-¿DAG Instruction Selection pass.

Figure 5.10: Further example OpenCL kernels which crash Intel compiler passes.

100 Chapter 5. Lowering the Cost of Compiler Validation

1 kernel void A(global int* a, global int* b,

2 global int* c) {

3 a[get_global_id(0)] = a[get_global_id(0)] > b;

4 }

(a) Assertion storing/loading pointers only support private array.

1 kernel void A(global int* a) {

2 global int* b = ((void*)0);

3 b[0] = a;

4 }

(b) Assertion iter != pointerOrigMap.end().

Figure 5.11: Example kernels which trigger compiler assertions which both CLSmith

and DeepSmith exposed.

5.4.4 Compiler Stability Over Time

The Clang front-end to LLVM supports OpenCL, and is commonly used in OpenCL

drivers. This, in turn, causes Clang-related defects to potentially affect multiple com-

pilers, for example, the one in Figure 5.4e. To evaluate the impact of Clang, de-

bug+assert builds of every LLVM release in the past 24 months were used to process

75,000 DeepSmith kernels through the Clang front-end (this includes the lexer, parser,

and type checker, but not code generation).

Figure 5.12 shows that the number of crashes observed in the Clang front-end is, for

the most part, steadily decreasing over time. The number of failing compiler crashes

decreased tenfold between 3.6.2 and 5.0.0. Table 5.4 shows the 7 distinct assertions

triggered during this experiment. Assertion 1 (Uncorrected typos!) is raised on all

compiler versions — see Figure 5.4a for an example. The overall rate at which the as-

sertion is triggered has decreased markedly, although there are slight increases between

some releases. Notably, the current development trunk has the second lowest crash rate

but is joint first in terms of the number of unique assertions. Assertions 3 (Addr == 0

—— hasTargetSpecificAddressSpace()) and 4 (isScalarType()) were triggered by some

kernels in the development trunk but not under any prior release.

5.4. Evaluation 101

Figure 5.12: The crash rate of the Clang front-end of every LLVM release in the past 24

months compiling 75k DeepSmith kernels, plotted with a logarithmic scale.

Bug reports have been submitted for each of the three assertions triggered in the

development trunk, as well as for two distinct unreachables.

The results emphasise that compiler validation is a moving target. Every change

and feature addition has the potential to introduce regressions or new failure cases.

Since LLVM will not release unless their compiler passes their own extensive test

suites, this also reinforces the case for compiler fuzzing. DeepSmith provides an ef-

fective means for the generation of such fuzzers, at a fraction of the cost of existing

techniques.

5.4.5 Extensibility of Language Model

A large portion of the DeepSmith architecture is language-agnostic, requiring only a

corpus, encoder, and harness for each new language. This potentially significantly low-

ers the barrier-to-entry compared with prior grammar-based fuzzers. This section re-

ports on initial results in extending DeepSmith to the Solidity programming language.

Solidity is the smart contract programming language of the Ethereum blockchain. At

less than four years old, it lacks much of the tooling of more established programming

languages. Yet, it is an important candidate for rigorous testing, as exploitable bugs

may undermine the integrity of the blockchain and lead to fraudulent transactions.

102 Chapter 5. Lowering the Cost of Compiler Validation

3.6.2 3.7.1 3.8.1 3.9.1 4.0.1 5.0.0 Trunk

Assertion 1 2962 1327 1332 414 523 83 97

Assertion 2 1 1

Assertion 3 1

Assertion 4 2

Assertion 5 147

Assertion 6 1

Assertion 7 1 1

Unreachable 86 42 14 14 18 13 21

Table 5.4: The number of DeepSmith programs which trigger distinct Clang front-end

assertions, and the number of programs which trigger unreachables.

Compiler ± Silent Crashes Assertion 1 Assertion 2

solc
− 204 1

+ 204 1

− 3628 1 1
solc-js

+ 908 1 1

Table 5.5: The number of DeepSmith programs that trigger Solidity compiler crashes in

12 hours of testing.

5.5. Summary 103

5.4.5.1 Testing Methodology

The same methodology was applied to train the program generator as for OpenCL. A

corpus of 1.74M Solidity contracts was assembled from GitHub, recursively inlining

imported modules where possible. The same tokeniser was used as for OpenCL, only

changing the list of language keywords and builtins. Code style was enforced using

clang-format. The model is trained in the same manner as OpenCL. No modification

to either the language model or generator code was required. A simple compile-only

test harness is used to drive the generated Solidity contracts.

5.4.5.2 Initial Results

The generator and harness loop was run for 12 hours on four testbeds: the Solid-

ity reference compiler solc with optimisations on or off, and solc-js, which is an

Emscripten compiled version of the solc compiler. Table 5.5 summarises the results.

Numerous cases were found where the compiler silently crashes, and two distinct com-

piler assertions. The first is caused by missing error handling of language features (this

issue is known to the developers). The source of the second assertion is the JavaScript

runtime and is triggered only in the Emscripten version, suggesting an error in the

automatic translation from LLVM to JavaScript.

Extending DeepSmith to a second programming required an additional 150 lines

of code (18 lines for the generator and encoder, the remainder for the test harness) and

took about a day. Given the re-usability of the core DeepSmith components, there is

a diminishing cost with the addition of each new language. For example, the OpenCL

encoder and re-writer, implemented using LLVM, could be adapted to C with minimal

changes. Given the low-cost of extensibility, these preliminary results indicate the

utility of the approach for simplifying test case generation.

5.5 Summary

This chapter presents a novel framework for compiler fuzzing. By posing the genera-

tion of random programs as an unsupervised machine learning problem, the cost and

human effort required to engineer a compiler fuzzer are drastically lowered. This aims

to address the adoption challenge of machine learning (Section 1.2.3). Large parts

of the stack are programming language-agnostic, requiring only a corpus of example

programs, an encoder, and a test harness to target a new language.

104 Chapter 5. Lowering the Cost of Compiler Validation

The approach is demonstrated by targeting the challenging many-core domain of

OpenCL. The implementation, DeepSmith, has uncovered dozens of bugs in both com-

mercial and open-source OpenCL compilers. DeepSmith exposed bugs in parts of the

compiler where current approaches have not, for example in missing error handling.

A preliminary exploration of the extensibility of this approach to other languages has

been performed. DeepSmith test cases are small, two orders of magnitude shorter than

the state-of-the-art, and easily interpretable.

Chapter 6

Simplifying the Construction of

Optimisation Heuristics

6.1 Introduction

There are countless scenarios during the compilation and execution of a program where

decisions must be made as to how, or if, a particular optimisation should be applied.

Modern compilers and runtimes are rife with hand-coded heuristics which perform

this decision making. The performance of programs is thus dependent on the quality

of these heuristics.

Handwritten heuristics require expert knowledge, take a lot of time to construct,

and in many cases lead to sub-optimal decisions. Researchers have focused on ma-

chine learning as a means of constructing high-quality heuristics that often outperform

their handcrafted equivalents [Aga+06; Cum+16a; FE15; MSD16; SA05]. A pre-

dictive model is trained, using supervised machine learning, on empirical performance

data and important quantifiable properties, or features, of representative programs. The

model learns the correlation between these features and the optimisation decision that

maximises performance. The learned correlations are used to predict the best opti-

misation decisions for new programs. Previous works in this area were able to build

machine learning based heuristics with less effort, that outperform ones created manu-

ally by experts [GWO13; MDO14].

Still, experts are not completely removed from the design process, which is shown

in Figure 6.1a. Selecting the appropriate features is a manual undertaking which re-

quires a deep understanding of the system. The designer essentially decides which

compile or runtime characteristics affect optimisation decisions and expresses them in

105

106 Chapter 6. Simplifying the Construction of Optimisation Heuristics

RuntimesRuntimes

Feature
Extractor

FeaturesFeaturesFeatures

ProgramsProgramsPrograms
Predictive

Model

ProgramsProgramsTraining
Data

RuntimesDriver

(a) Current state-of-practice

RuntimesRuntimesProgramsProgramsPrograms
Predictive

Model

ProgramsProgramsTraining
Data

RuntimesDriver

(b) The proposed approach

Figure 6.1: Building a predictive model. The model is originally trained on performance

data and features extracted from the source code and the runtime behaviour. The pro-

posed approach bypasses feature extraction, instead learning directly over raw program

source code.

ways that make it easy to model their relationship to performance. Failing to identify

an important feature has a negative effect on the resulting heuristic. For example, in

Section 4.7.2 the Grewe, Wang, and O’Boyle model is shown to be missing one such

feature, causing performance to be 40% lower on average.

To make heuristic construction fast and cheap, humans must be taken out of the

loop. While techniques for automatic feature generation from the compiler IR have

been proposed in the past [LBO14; Nam+10], they do not solve the problem in a prac-

tical way. They are deeply embedded into the compiler, require expert knowledge to

guide the generation, have to be repeated from scratch for every new heuristic, and their

search time can be prohibitive. Inspired by the success of recurrent neural networks at

generating program code for benchmarking and compiler testing, I hypothesised that

a learning system should be able to automatically extract feature representations from

source code. These learned feature representations could then be used as inputs to

other learning systems for task-specific purposes such as learning optimisation heuris-

tics. This would mitigrate the feature design challenge (Section 1.2.2).

The experiments showed that this was a conservative target: with deep neural net-

works, one can entirely bypass static feature extraction and learn optimisation heuris-

tics directly on raw code, without the need for an intermediate representation.

6.1. Introduction 107

Figure 6.1b shows the proposed methodology. Instead of manually extracting fea-

tures from input programs to generate training data, program code is used directly as

training data. Programs are fed through a series of artificial neural networks which

learn how code correlates with performance. Internally and without prior knowledge,

the networks construct complex abstractions of the input program characteristics and

correlations between those abstractions and performance. This chapter proposes re-

placing the need for compile-time or static code features, merging feature and heuris-

tic construction into a single process of joint learning. The system admits auxiliary

features to describe information unavailable at compile time, such as the sizes of run-

time input parameters. Beyond these optional inclusions, the system is able to learn

optimisation heuristics without human guidance.

By employing transfer learning [Yos+14], the proposed approach is able to pro-

duce high-quality heuristics even when learning on a small number of programs. The

properties of the raw code that are abstracted by the beginning layers of the artifi-

cial neural networks are mostly independent of the optimisation problem. Parts of

the network may be reused across heuristics, and, in the process, speed up learning

considerably.

The approach is evaluated on two parallel compilation problems: heterogeneous

device mapping and GPU thread coarsening. Good heuristics for these two problems

are important for extracting performance from heterogeneous systems, and the fact that

machine learning has already been applied to constructing heuristics for these prob-

lems allows direct comparison. Prior machine learning approaches resulted in good

heuristics which extracted 73% and 79% of the available performance respectively but

required extensive human effort to select the appropriate features. Nevertheless, the

approach presented in this chapter was able to outperform them by 14% and 12%,

which indicates a better identification of important program characteristics, without

any expert help.

This chapter is organised as follows: Section 6.2 describes DeepTune, a novel

system for building optimisation heuristics. In Sections 6.3 and 6.4, case studies are

presented that evaluate DeepTune’s capabilities first at predicting heterogeneous de-

vice mapping, then thread coarsening. Section 6.5 explores the novel transfer of in-

formation between the two problems. Section 6.6 illuminates the inner workings of

DeepTune by analysing the internal state within the artificial neural networks. Finally,

Section 6.7 contains concluding remarks.

108 Chapter 6. Simplifying the Construction of Optimisation Heuristics

6.2 DeepTune: Learning On Raw Program Code

DeepTune is an end-to-end machine learning pipeline for optimisation heuristics. Its

primary input is the source code of a program to be optimised, and through a series of

artificial neural networks, it directly predicts the optimisation which should be applied.

By learning on source code, the approach is not tied to a specific compiler, platform, or

optimisation problem. The same design can be reused to build multiple heuristics. The

most important innovation of DeepTune is that it obviates the need for human experts

to select and tune appropriate features.

6.2.1 Overview

Figure 6.2 provides an overview of the system. A source re-writer removes seman-

tically irrelevant information (such as comments) from the source code of the target

program and passes it to a language model. The language model converts the arbi-

trary length stream of code into a fixed length vector of real values which fully capture

the properties and structure of the source, replacing the role of hand-designed fea-

tures. This vector can then optionally be concatenated with auxiliary inputs, which

allow passing additional data about runtime or architectural parameters to the model

for heuristics which need more than just compile-time information. Finally, a standard

feed-forward network is used to predict the best heuristic parameters to optimise the

program.

DeepTune is open source. The model is implemented in Keras, with Tensor-

Flow [Aba+16] and Theano [Ber+11] back-ends.

6.2.2 Language Model

Learning effective representations of source code is a difficult task. A successful model

must be able to:

• derive semantic and syntactic patterns of a programming language entirely from

sample codes;

• identify the patterns and representation in source codes which are relevant to the

task at hand; and

• discriminate performance characteristics arising from potentially subtle differ-

ences in similar codes.

6.2. DeepTune: Learning On Raw Program Code 109

H
e

u
ri

s
ti

c

M
o

d
e

l

Auxiliary InputsSource Code

Dense NN

Predicted Optimisation

Embedding

Source Rewriter

Sequence Encoder

Batch Normalisation

void nbody_sim(__global float4* pos... [256, 2095172]

Device mapping: {CPU,GPU}

L
a

n
g

u
a

g
e

 M
o

d
e

l

LSTM

(optional)

(concatenate)

Figure 6.2: DeepTune system overview. Code properties are extracted from source

code by the language model. They are fed, together with optional auxiliary inputs, to

the heuristic model to produce the final prediction.

110 Chapter 6. Simplifying the Construction of Optimisation Heuristics

To achieve this task, state-of-the-art language modelling techniques are employed,

coupled with a series of generic, language-agnostic code transformations.

6.2.2.1 Source Re-writer

To begin with, a series of source normalising transformations are applied, extending

the system described in Chapter 5. These transformations, implemented as an LLVM

pass, parse the AST, removing conditional compilation, then rebuild the input source

code using a consistent code style and identifier naming scheme. The role of source

normalisation is to simplify the task of modelling source code by ensuring that trivial

semantic differences in programs such as the choice of variable names or the insertion

of comments do not affect the learned model. Figures 6.3a and 6.3b show the source

rewriting process applied to a simple program.

6.2.2.2 Sequence Encoder

The textual representation of program codes must be encoded as numeric sequences

for feeding as input to the machine learning model. This is achieved by extending the

encoder described in Section 5.2, in which a programming language’s keywords and

common names are treated as individual tokens while the rest of the text is encoded on

a character-level basis. This approach hits a balance between compressing the input

text and keeping the number of tokens in the vocabulary low. Figure 6.3c shows the

vocabulary derived from the single input source code in Figure 6.3b.

6.2.2.3 Embedding

During encoding, tokens in the vocabulary are mapped to unique integer values, e.g.

float→ 0, int→ 1. The chosen integer values are arbitrary, and offer a sparse data

representation, meaning that a language model cannot infer the relationships between

tokens based on their mappings. This is in contrast to the dense representations of

other domains, such as pixels in images, which can be interpolated between to derive

the differences in colours.

To mitigate this, an embedding is used, which translates tokens in a sparse, integer-

encoded vocabulary into a lower dimensional vector space, allowing semantically re-

lated tokens like float and int to be mapped to nearby points [BDK14; Mik+13]. An

embedding layer maps each token in the integer-encoded vocabulary to a vector of real

values. Given a vocabulary size |V | and embedding dimensionality D, an embedding

6.2. DeepTune: Learning On Raw Program Code 111

matrix WWW E ∈ R|V |×D is learned during training such that an integer-encoded sequence

of tokens ttt ∈NL is mapped to the matrix TTT ∈RL×D. In this work, a embedding dimen-

sionality D = 64 is used, selected somewhat arbitrarily, with best-practices suggesting

an empirical approach to determine good values. Research into analytical models for

selecting embedding dimensionality is ongoing [Nau19; YS18].

6.2.2.4 Sequence Characterisation

Once source codes have been encoded into sequences of embedding vectors, artificial

neural networks are used to extract a fixed size vector which characterises the entire

sequence. This is comparable to the hand engineered feature extractors used in prior

works, but is a learned process that occurs entirely — and automatically — within the

hidden layers of the network.

The Long Short-Term Memory (LSTM) architecture is used for sequence charac-

terisation [HS97]. LSTMs implement a Recurrent Neural Network in which the activa-

tions of neurons are learned with respect not just to their current inputs, but to previous

inputs in a sequence. Unlike regular recurrent networks in which the strength of learn-

ing decreases over time (a symptom of the vanishing gradients problem [PMB13]),

LSTMs employ a forget gate with a linear activation function, allowing them to re-

tain activations for arbitrary durations. This makes them effective at learning com-

plex relationships over long sequences [LBE15], an especially important capability

for modelling program code, as dependencies in sequences frequently occur over long

ranges (for example, a variable may be declared as an argument to a function and used

throughout).

The LSTM network has two layers of cells. The network receives a sequence of

embedding vectors, and returns a single output vector, characterising the entire se-

quence.

6.2.3 Auxiliary Inputs

An arbitrary number of additional real-valued auxiliary inputs may be optionally used

to augment the source code input. These inputs are provided as a means of increasing

the flexibility of the system, for example, to support applications in which the opti-

misation heuristic depends on dynamic values which cannot be statically determined

from the program code [Din+15; SA05]. When present, the values of auxiliary inputs

are concatenated with the output of the language model and fed into a heuristic model.

112 Chapter 6. Simplifying the Construction of Optimisation Heuristics

1 kernel void memset_kernel(global char * mem_d, short val, int

number_bytes){↪→

2 const int thread_id = get_global_id(0);

3 mem_d[thread_id] = val; }

(a) An example, short OpenCL kernel, taken from Nvidia’s streamcluster.

1 kernel void A(global char* a, short b, int c) {

2 const int d = get_global_id(0);

3 a[d] = b;

4 }

(b) The streamcluster kernel after source rewriting. Variable and function names are normalised, com-

ments removed, and code style enforced.

idx token idx token idx token

1 ‘ kernel’ 10 ‘,’ 19 ‘const’

2 ‘ ’ 11 ‘short’ 20 ‘d’

3 ‘void’ 12 ‘b’ 21 ‘=’

4 ‘A’ 13 ‘int’ 22 ‘get global id’

5 ‘(’ 14 ‘c’ 23 ‘0’

6 ‘ global’ 15 ‘)’ 24 ‘;’

7 ‘char’ 16 ‘{’ 25 ‘[’

8 ‘*’ 17 ‘\n’ 26 ‘]’

9 ‘a’ 18 ‘ ’ 27 ‘}’

(c) Derived vocabulary, ordered by their appearance in the input (b). The

vocabulary maps tokens to integer indices.

01 02 03 02 04 05 06 02 07 08 02

09 10 02 11 02 12 10 02 13 02 14

15 02 16 17 18 19 02 13 02 20 02

21 02 22 05 23 15 24 17 18 09 25

20 26 02 21 02 12 24 17 27 <pad...>

(d) Indices encoded kernel sequence. Sequences may be padded to a

fixed length by repeating an out-of-vocabulary integer (e.g. -1).

Figure 6.3: Deriving a tokenised 1-of-k vocabulary encoding from source code.

6.2. DeepTune: Learning On Raw Program Code 113

6.2.4 Heuristic Model

The heuristic model takes the learned representations of the source code and auxiliary

inputs (if present) and uses these values to make the final optimisation prediction.

First, the values are normalised. Normalisation is necessary because the auxiliary

inputs can have any values, whereas the language model activations are in the range

[0,1]. If the heuristic model inputs were not normalised, then scaling the auxiliary

inputs could affect the training of the heuristic model. Normalisation occurs in batches.

The batch normalisation method of [IS15] is used, in which each scalar of the heuristic

model’s n inputs xxx(1), . . . ,xxx(n) is independently normalised to a mean 0 and standard

deviation of 1:

x̂xx(i) = γ(i) xxx(i)−E(xxx(i))√
Var(xxx(i))

+βββ
(i) (6.1)

Where γ and βββ are scale and shift parameters, learned during training.

The final component of DeepTune is comprised of two fully connected artificial

neural network layers. The first layer consists of 32 neurons. The second layer con-

sists of a single neuron for each possible heuristic decision. Each neuron applies an

activation function φ(z) over its inputs. Rectified linear units φ(z) = max(z,0) are used

in the first layer due to their improved performance during the training of deep net-

works [NH10]. For the output layer, sigmoid activation functions φ(z) = 1
1+e−z are

used which provide activations in the range [0,1].

The activation of each neuron in the output layer represents the model’s confi-

dence that the corresponding decision is the correct one. Taking the argmax of the

output layer produces the decision with the largest activation. For example, for a bi-

nary optimisation heuristic the final layer will consist of two neurons, and the predicted

optimisation is the neuron with the largest activation.

6.2.5 Training the Network

DeepTune is trained in the same manner as prior supervised machine learning works,

the key difference being that instead of having to manually create and extract features

from programs, the raw program codes themselves are used.

The model is trained with Stochastic Gradient Descent (SGD) using the Adam

optimiser [KB15]. For training data xxx(1), . . . ,xxx(n), SGD attempts to find the model

parameters Θ̂ΘΘ that minimise the output of a loss function:

114 Chapter 6. Simplifying the Construction of Optimisation Heuristics

Θ̂ΘΘ = argmin
ΘΘΘ

1
n

n

∑
i=1

L
(

xxx(i),ΘΘΘ
)

(6.2)

where loss function L (xxx,ΘΘΘ) computes the logarithmic difference between the pre-

dicted and expected values given a model constructed using parameters ΘΘΘ.

To reduce training time, multiple inputs are batched together and fed into the ar-

tificial neural network simultaneously, reducing the frequency of costly weight up-

dates during back-propagation. This requires that the inputs to the language model be

the same length. Sequences are padded up to a fixed length of 1024 tokens using a

special out-of-vocabulary padding token τ 6∈ V , allowing matrices of batch size ×
max seq len tokens to be processed simultaneously. Batching and padding sequences

to a maximum length is only to improve training time. In production use, sequences do

not need to be padded, allowing classification of arbitrary length codes in linear time.

6.3 Case Study A: OpenCL Heterogeneous Mapping

OpenCL provides a platform-agnostic framework for heterogeneous parallelism. This

allows a program written in OpenCL to execute transparently across a range of dif-

ferent devices, from CPUs to GPUs and FPGAs. Given a program and a choice of

execution devices, the question then is on which device should one execute the pro-

gram to maximise performance?

6.3.1 State-of-the-art

I return to the Grewe, Wang, and O’Boyle [GWO13] predictive model of Chapter 4 for

mapping OpenCL kernels to the optimal device in CPU/GPU heterogeneous systems.

The authors use supervised learning to construct decision trees, using a combination

of static and dynamic kernel features. The static program features are extracted using

a custom LLVM pass; the dynamic features are taken from the OpenCL runtime.

Expert Chosen Features Table 6.1a shows the features used in their work. Each

feature is an expression built upon the code and runtime metrics given in Table 6.1b.

6.3. Case Study A: OpenCL Heterogeneous Mapping 115

Name Description

F1: data size/(comp+mem)
commun.-computation

ratio

F2: coalesced/mem
% coalesced memory

accesses

F3: (localmem/mem)×wgsize
ratio local to global mem

accesses × #. work-items

F4: comp/mem computation-mem ratio

(a) Feature values

Name Type Description

comp static #. compute operations

mem static #. accesses to global memory

localmem static #. accesses to local memory

coalesced static #. coalesced memory accesses

data size dynamic size of data transfers

work-group size dynamic #. work-items per kernel

(b) Values used in feature computation

Table 6.1: Features used by Grewe, Wang, and O’Boyle to predict heterogeneous de-

vice mappings for OpenCL kernels.

116 Chapter 6. Simplifying the Construction of Optimisation Heuristics

Version #. benchmarks #. kernels

NPB (SNU [SJL11]) 1.0.3 7 114

Rodinia [Che+09] 3.1 14 31

NVIDIA SDK 4.2 6 12

AMD SDK 3.0 12 16

Parboil [Str+12] 0.2 6 8

PolyBench [Gra+12] 1.0 14 27

SHOC [Dan+10] 1.1.5 12 48

Total - 71 256

Table 6.2: Benchmarks used in Case Study A.

Frequency Memory Driver

Intel Core i7-3820 3.6 GHz 8GB AMD 1526.3

AMD Tahiti 7970 1000 MHz 3GB AMD 1526.3

NVIDIA GTX 970 1050 MHz 4GB NVIDIA 361.42

Table 6.3: Experimental platforms used in Case Study A.

6.3.2 Experimental Setup

The predictive model of Grewe, Wang, and O’Boyle [GWO13] is replicated. The same

experimental setup is used as in Chapter 4 in which the experiments are extended to

a larger set of 71 programs, summarised in Table 6.2. The programs are evaluated on

two CPU-GPU platforms, detailed in Table 6.3.

DeepTune Configuration Figure 6.4a shows the artificial neural network configu-

ration of DeepTune for the task of predicting optimal device mapping. The OpenCL

kernel source code is used as input, along with the two dynamic values work-group

size and data size available to the OpenCL runtime.

Model Evaluation Stratified 10-fold cross-validation is used to evaluate the quality

of the predictive models [HKP11]. Each program is randomly allocated into one of 10

equally-sized sets; the sets are balanced to maintain a distribution of instances from

each class consistent with the full set. A model is trained on the programs from all but

one of the sets, then tested on the programs of the unseen set. This process is repeated

for each of the 10 sets to construct a complete prediction over the whole data set.

6.3. Case Study A: OpenCL Heterogeneous Mapping 117

{CPU,GPU}

DNN_2

DNN_1

Normal.

Concat.

LSTM_2

LSTM_1

Embedding

Inputs

wgsize

(a)

dsizecode code

(b)

{1,2,4,8,16,32}

Figure 6.4: DeepTune artificial neural networks, configured for (a) heterogeneous map-

ping, and (b) thread coarsening factor. The design stays almost the same regardless of

the optimisation problem. The only changes are the extra input for (a) and size of the

output layers. To aid in visualisation, the number of neurons in each layer is reduced.

For the true neuron counts, see Table 6.7

6.3.3 Experimental Results

Selecting the optimal execution device for OpenCL kernels is essential for maximising

performance. For a CPU/GPU heterogeneous system, this presents a binary choice. In

this experiment, the approach is compared to a static single-device approach and the

Grewe, Wang, and O’Boyle predictive model. The static mapping selects the device

which gave the best average case performance over all the programs. On the AMD

platform, the best-performing device is the CPU; on the NVIDIA platform, it is the

GPU.

Figure 6.5 shows the accuracy of both predictive models and the static mapping

approach for each of the benchmark suites. The static approach is accurate for only

58.8% of cases on AMD and 56.9% on NVIDIA. This suggests the need for choosing

the execution device on a per program basis. The Grewe, Wang, and O’Boyle model

118 Chapter 6. Simplifying the Construction of Optimisation Heuristics

achieves an average accuracy of 73%, a significant improvement over the static map-

ping. By automatically extracting useful feature representations from the source code,

DeepTune gives an average accuracy of 82%, an improvement over both schemes.

Using the static mapping as a baseline, the relative performance of each program is

computed using the device selected by the Grewe, Wang, and O’Boyle and DeepTune

models. Figure 6.6 shows these speedups. Both predictive models significantly outper-

form the static mapping; the Grewe et al. model achieves an average speedup of 2.91×
on AMD and 1.26× on NVIDIA (geometric mean 1.18×). In 90% of cases, Deep-

Tune matches or outperforms the predictions of the Grewe et al. model, achieving an

average speedup of 3.34× on AMD and 1.41× on NVIDIA (geometric mean 1.31×).

This 14% improvement in performance comes at a greatly reduced cost, requiring no

intervention by humans.

6.4 Case Study B: OpenCL Thread Coarsening Factor

Thread coarsening is an optimisation for parallel programs in which the operations of

two or more threads are fused together. The number of threads which must be executed

is then reduced by this thread coarsening factor. This optimisation might prove ben-

eficial on certain combinations of programs and architectures, for example, programs

with a large potential for Instruction-level Parallelism on Very Long Instruction Word

architectures.

6.4.1 State-of-the-art

Magni, Dubach, and O’Boyle present a predictive model for OpenCL thread coars-

ening in [MDO14]. They implement an iterative heuristic which determines whether

a given program would benefit from coarsening. If yes, then the program is coars-

ened, producing a new program from which features can be computed. This process

is repeated, allowing further coarsening. In this manner, the problem is reduced from

a multi-label classification problem into a series of binary decisions, shown in Fig-

ure 6.7a. They select from one of six possible coarsening factors: (1,2,4,8,16,32),

divided into 5 binary choices.

Expert Chosen Features Magni, Dubach, and O’Boyle followed a comprehensive

feature engineering process. 17 candidate features were assembled from previous stud-

6.4. Case Study B: OpenCL Thread Coarsening Factor 119

Figure 6.5: Accuracy of optimisation heuristics for heterogeneous device mapping, ag-

gregated by benchmark suite. The optimal static mapping achieves 58% accuracy. The

Grewe, Wang, and O’Boyle and DeepTune predictive models achieve accuracies of

73% and 84%, respectively.

120 Chapter 6. Simplifying the Construction of Optimisation Heuristics

(a) AMD Tahiti 7970 (b) NVIDIA GTX 970

Figure 6.6: Speedup of predicted heterogeneous mappings over the best static map-

ping for both platforms. In (a), DeepTune achieves an average speedup of 3.43x over

static mapping and 18% over Grewe, Wang, and O’Boyle. In (b), the speedup is 1.42x

and 13% respectively.

6.4. Case Study B: OpenCL Thread Coarsening Factor 121

No …

Source code (CF1)

Feature vector (CF1)

Coarsen?

No Yes

Feature vector (CF2)

Feature vector (CF4)

Coarsen?

No Yes

Coarsen?

CF: 2

CF: 1

CF: 4

Source code (CF2)

Coarsening Pass

Source code (CF4)

Coarsening Pass

(a) Magni, Dubach, and O’Boyle cascading binary model.

Source code (CF1)

Coarsening Factor?

CF:1 CF:2 CF:4 CF:8 CF:16 CF:32

(b) Proposed approach.

Figure 6.7: Two approaches for predicting coarsening factor (CF) of OpenCL kernels.

Magni, Dubach, and O’Boyle reduce the multi-label classification problem to a series

of binary decisions by iteratively applying the optimisation and computing new feature

vectors. The proposed approach simply predicts the coarsening factor directly from the

source code.

122 Chapter 6. Simplifying the Construction of Optimisation Heuristics

Name Description

BasicBlocks #. basic blocks

Branches #. branches

DivInsts #. divergent instructions

DivRegionInsts #. instructions in divergent regions

DivRegionInstsRatio #. instr. in divergent regions / total instructions

DivRegions #. divergent regions

TotInsts #. instructions

FPInsts #. floating point instructions

ILP average ILP / basic block

Int/FP Inst Ratio #. branches

IntInsts #. integer instructions

MathFunctions #. match builtin functions

MLP average MLP / basic block

Loads #. loads

Stores #. stores

UniformLoads #. loads unaffected by coarsening direction

Barriers #. barriers

Table 6.4: Candidate features used by Magni, Dubach, and O’Boyle for predicting

thread coarsening. From these values, they compute relative deltas for each iteration

of coarsening, then use PCA for selection.

6.4. Case Study B: OpenCL Thread Coarsening Factor 123

Version #. benchmarks #. kernels

NVIDIA SDK 4.2 3 3

AMD SDK 3.0 10 10

Parboil [Str+12] 0.2 4 4

Total - 17 17

Table 6.5: Benchmarks used in Case Study B.

Frequency Memory Driver

AMD HD 5900 725 MHz 2GB AMD 1124.2

AMD Tahiti 7970 1000 MHz 3GB AMD 1084.4

NVIDIA GTX 480 700 MHz 1536 MB NVIDIA 304.54

NVIDIA K20c 706 MHz 5GB NVIDIA 331.20

Table 6.6: Experimental platforms used in Case Study B.

ies of performance counters and computed theoretical values [MDO13; Sim+12]. For

each candidate feature, they compute its coarsening delta, reflecting the change in each

feature value caused by coarsening: f∆ = (fa f ter− fbe f ore)/ fbe f ore, adding it to the fea-

ture set. Then they use Principal Component Analysis (PCA) on the 34 candidates and

selected the first 7 principal components, accounting for 95% of variance in the space.

6.4.2 Experimental Setup

The experimental setup of Magni, Dubach, and O’Boyle [MDO14] is replicated for

this case study. The thread coarsening optimisation is evaluated on 17 programs, listed

in Table 6.5. Four different GPU architectures are used, listed in Table 6.6.

DeepTune Configuration Figure 6.4b shows the artificial neural network configu-

ration. The OpenCL kernel is the sole input and coarsening factor is the predicted

output.

Model Evaluation Compared to Case Study A, the size of the evaluation is small. As

such, leave-one-out cross-validation is used to evaluate the models. For each program,

a model is trained on data from all other programs and used to predict the coarsening

factor of the excluded program.

124 Chapter 6. Simplifying the Construction of Optimisation Heuristics

#. neurons #. parameters
HM CF HM CF

Embedding 64 64 256 256

LSTM 1 64 64 33,024 33,024

LSTM 2 64 64 33,024 33,024

Concatenate 64 + 2 - - -

Batch Normalisation 66 64 264 256

DNN 1 32 32 2,144 2,080

DNN 2 2 6 66 198

Total 68,778 68,838

Table 6.7: The size and number of parameters of the DeepTune components of Fig-

ure 6.4, configured for heterogeneous mapping (HM) and coarsening factor (CF).

The parameters of the artificial neural network are not described in [MDO14], so

an additional, nested cross-validation process is used to find the optimal model pa-

rameters. For every program in the training set, a grid search of 48 combinations of

network parameters is performed. The best performing parameter configuration is se-

lected from these 768 results to train a model for prediction on the excluded program.

This nested cross-validation is repeated for each of the training sets. No such tuning

of hyper-parameters is performed for DeepTune.

6.4.3 Comparison to Case Study A

For the two different optimisation heuristics, the authors arrived at very different pre-

dictive model designs, with very different features. By contrast, the DeepSmith ap-

proach is exactly the same for both problems. None of DeepTune’s parameters were

tuned for the case studies presented above. Their settings represent conservative choices

expected to work reasonably well for most scenarios.

Table 6.7 shows the similarity of the models. The only difference between the

network designs is the auxiliary inputs for Case Study A and the different number of

optimisation decisions. The differences between DeepTune configurations is only two

lines of code: the first, adding the two auxiliary inputs; the second, increasing the size

of the output layer for Case Study B from two neurons to six. The description of these

differences is larger than the differences themselves.

6.5. Transfer Learning Across Problem Domains 125

6.4.4 Experimental Results

Exploiting thread coarsening for OpenCL kernels is a difficult task. On average, coars-

ening slows programs down. The speedup attainable by a perfect heuristic is only

1.36×.

Figures 6.8 and 6.9 show speedups achieved by the Magni, Dubach, and O’Boyle

and DeepTune models for all programs and platforms. The performance of programs

without coarsening is used as a baseline. On the four experimental platforms (AMD

HD 5900, Tahiti 7970, NVIDIA GTX 480, and Tesla K20c), the Magni, Dubach, and

O’Boyle model achieves average speedups of 1.21×, 1.01×, 0.86×, and 0.94×, re-

spectively. DeepTune outperforms this, achieving speedups of 1.10×, 1.05×, 1.10×,

and 0.99×.

Some programs — especially those with large divergent regions or indirect memory

accesses — respond poorly to coarsening. No performance improvement is possible on

the mvCoal and spmv programs. Both models fail to achieve positive average speedups

on the NVIDIA Tesla K20c, because thread coarsening does not give performance

gains for the majority of the programs on this platform.

The disappointing results for both predictive models may be attributed to the small

training program set (only 17 programs in total). As a result, the models suffer from

sparse training data. In Chapter 4 of this thesis, a methodology for overcoming data

sparsity using additional programs is presented. In this instance, the shared structure

of the DeepTune models between the two case studies enables an alternative strategy

to overcome data scarcity. The following subsection describes and tests a novel strat-

egy for training optimisation heuristics on a small number of programs by exploiting

knowledge learned from other optimisation domains.

6.5 Transfer Learning Across Problem Domains

There are inherent differences between the tasks of building heuristics for heteroge-

neous mapping and thread coarsening, evidenced by the contrasting choices of features

and models used by the state-of-the-art approaches in Case Studies A and B. However,

in both cases, the first role of DeepTune is to extract meaningful abstractions and rep-

resentations of OpenCL code. Prior research in deep learning has shown that models

trained on similar inputs for different tasks often share useful commonalities. The idea

is that in classification using artificial neural networks, information learned at the early

126 Chapter 6. Simplifying the Construction of Optimisation Heuristics

(a)

(b)

Figure 6.8: Speedups of predicted coarsening factors on AMD platforms. DeepTune

outperforms Magni, Dubach, and O’Boyle on three of the four platforms. Transfer learn-

ing improves DeepTune speedups further, by 16% on average.

6.5. Transfer Learning Across Problem Domains 127

(a)

(b)

Figure 6.9: Speedups of predicted coarsening factors on NVIDIA platforms. DeepTune

outperforms Magni, Dubach, and O’Boyle on three of the four platforms. Transfer learn-

ing improves DeepTune speedups further, by 16% on average.

128 Chapter 6. Simplifying the Construction of Optimisation Heuristics

layers of artificial neural networks (i.e. closer to the input layer) will be useful for

multiple tasks. The later the network layers are (i.e. closer to the output layer), the

more specialised the layers become [ZF14].

Hypothesising that this would be the case for DeepTune would enable the novel

transfer of information across different optimisation domains. To test this, the lan-

guage model — the Embedding, and LSTM {1,2} layers — trained for the hetero-

geneous mapping task was extracted and transferred over to the new task of thread

coarsening. Since DeepTune keeps the same design for both optimisation problems,

this is as simple as copying the learned parameters of the three layers. The model is

then trained as normal.

As shown in Figures 6.8 and 6.9, the newly trained model, DeepTune-TL has im-

proved performance for 3 of the 4 platforms: 1.17×, 1.23×, 1.14×, 0.93×, providing

an average 12% performance improvement over Magni, Dubach, and O’Boyle. In 81%

of cases, the use of transfer learning matched or improved the optimisation decisions

of DeepTune, providing up to a 16% improvement in per platform performance.

On the NVIDIA Tesla K20c, the platform for which no predictive model achieves

positive average speedups, DeepTune-TL matches or improve performance in the ma-

jority of cases, but over-coarsening on three of the programs causes a modest reduction

in average performance. For this platform, further performance results are suspected

necessary due to its unusual optimisation profile.

6.6 DeepTune Internal Activation States

In previous sections, DeepTune is shown to automatically outperform state-of-the-art

predictive models for which experts have invested a great amount of time in engineer-

ing features. This section attempts to illuminate the inner workings, using a single

example from Case Study B: predicting the thread coarsening factor for Parboil’s mriQ

benchmark on four different platforms.

Figure 6.10 shows the DeepTune configuration, with visual overlays showing the

internal state. From top to bottom, the input to the model is the 267 lines of OpenCL

code for the mriQ kernel. This source code is preprocessed, formatted, and rewritten

using variable and function renaming, shown in Figure 6.10b. The rewritten source

code is tokenised and encoded in a 1-of-k vocabulary. Figure 6.10c shows the first 80

elements of this encoded sequence as a heat map in which each cell’s colour reflects

its encoded value. The input, rewriting, and encoding is the same for each of the four

6.6. DeepTune Internal Activation States 129

Figure 6.10: Visualising the internal state of DeepTune when predicting coarsening

factor for Parboil’s mriQ benchmark on four different architectures. The activations in

each layer of the four models increasingly diverge the lower down the network.

130 Chapter 6. Simplifying the Construction of Optimisation Heuristics

platforms.

The encoded sequences are then passed into the Embedding layer. This maps each

token of the vocabulary to a point in a 64 dimension vector space. Embeddings are

learned during training so as to cluster semantically related tokens together. As such,

they may differ between the four platforms. Figure 6.10d shows a 3-dimensional

PCA projection of the embedding space for one of the platforms, showing multiple

clusters of tokens. Although achieving good separation of embedding clusters typi-

cally requires a much larger training set [BJH18], by honing in on one of the clusters

and annotating each point with its corresponding token, it can be observed that the

cluster contains the semantically related OpenCL address space modifiers private,

global, and read only.

Two layers of 64 LSTM neurons model the sequence of embeddings, with the

neuron activations of the second layer being used to characterise the entire sequence.

Figure 6.10e shows the neurons in this layer for each of the four platforms, using a red-

blue heat map to visualise the intensity of each activation. Comparing the activations

between the four platforms reveals a number of neurons in the layer with different

responses across platforms. This indicates that the language model is partly specialised

to the target platform. Subsequent work [BJH18] supports this reasoning, in which

performance is slightly degraded by training parts of the language model in a platform-

agnostic manner.

As information flows through the network, the layers become progressively more

specialised to the specific platform. This can be seen in Figure 6.10f, which shows the

two layers of the heuristic model. The activations within these increasingly diverge.

The mean variance of activations across platforms increases threefold compared to the

language model, from 0.039 to 0.107. Even the activations of the AMD HD 5900

and AMD Tahiti 7970 platforms are dissimilar, despite the final predicted coarsening

factor for both platforms being the same. The largest activation of the output layer is

taken in Figure 6.10g as the final predicted coarsening factor. For this particular pro-

gram, a state-of-the-art model achieves 54% of the maximum performance. DeepTune

achieves 99%.

6.7 Summary

Applying machine learning to compiler and runtime optimisations requires generating

features first. This is a time-consuming process, it needs supervision by an expert,

6.7. Summary 131

and even then one cannot be sure that the selected features are optimal. This feature

design challenge (Section 1.2.2) places a significant burden on developers looking to

adopt machine learning for constructing compiler optimisation heuristics. This chap-

ter presents a novel tool for building optimisation heuristics, DeepTune, which forgoes

feature extraction entirely, relying on powerful language modelling techniques to au-

tomatically build effective representations of programs directly from raw source code.

The result translates into a huge reduction in development effort, improved heuristic

performance, and simpler model designs.

The approach is fully automated. Using DeepTune, developers no longer need to

spend months using statistical methods and profile counters to select program features

via trial and error. It is worth mentioning that the model design or parameters are not

tailored for the optimisation task at hand, yet DeepTune achieves performance on par

with and in most cases exceeding state-of-the-art predictive models.

In this chapter, DeepTune is used to automatically construct heuristics for two chal-

lenging compiler and runtime optimisation problems. In both cases, DeepTune is found

to outperform state-of-the-art predictive models by 14% and 12%. The DeepTune ar-

chitecture is shown also to allow the exploitation of information learned from another

optimisation problem to give the learning a boost. Doing so provides up to a 16%

performance improvement when training using a handful of programs. This approach

may prove useful in other domains for which training data are a scarce resource.

Chapter 7

Conclusions

This thesis presents new techniques for the generation and optimisation of programs

using deep learning to address the challenges of compiler construction outlined in Sec-

tion 1.2. Chapter 4 addresses the data scarcity issue (Section 1.2.1) by developing a

methodology for the unguided generation of realistic benchmarks. Chapter 5 addresses

the adoption challenge (Section 1.2.3) by developing an effective compiler fuzzer that

is significantly simpler than state-of-the-art approaches, extending the generative tech-

nique to the domain of compiler validation. Finally, Chapter 6 explores techniques

that address the feature design challenge (Section 1.2.2) by addressing the difficult and

time-consuming task of manually constructing features for programs.

This chapter is structured as follows: Section 7.1 summarises the main contribu-

tions of this thesis, Section 7.2 presents a critical analysis of this work, Section 7.3 de-

scribes future research directions, and finally Section 7.4 provides concluding

remarks.

7.1 Contributions

The challenges identified in Section 1.2 prevent the adoption of machine learning in

compilers. This section summarises the main contributions of this thesis which make

a strong argument for machine learning as a valuable tool in compiler construction.

7.1.1 A Solution for Benchmark Scarcity

There is a shortage of benchmarks, forcing compiler developers to work with sparse

samplings of the program space. This data scarcity challenge limits the quality of

133

134 Chapter 7. Conclusions

learned models. Chapter 4 develops a novel generator for compiler benchmarks, capa-

ble of generating an unbounded number of training programs. The usefulness of the

generated benchmarks is evaluated on a state-of-the-art learned optimisation heuristic,

finding that the additional exploration of the program space provided by the generated

benchmarks improves performance by 1.27×.

This is the first use of machine learning over handwritten code to generate bench-

marks. Compared to previous works [CGA15], this approach is entirely automatic,

requiring no expert tuning or direction. Only a corpus of example programs is needed

to guide the distributions of generated programs. Despite no a priori knowledge of the

programming language, the generator is capable of producing executable benchmarks

of such quality that professional software developers cannot distinguish code generated

by it from handwritten code.

The approach, in generating an unbounded number of runnable programs, enables

a finer-grained exploration of the compiler optimisation feature space than was pre-

viously possible, without the development costs previously associated with bench-

mark generation. This simplifies the construction of compilers by enabling perfor-

mance models to be learned from automatically-generated data, and addresses the data

scarcity challenge described in Section 1.2.1. The technique may also prove valuable

to compiler feature designers (Section 1.2.2), as the granular exploration of the feature

space exposes deficiencies in the choice of features.

7.1.2 Low-cost and Effective Compiler Fuzzing

For machine learning techniques to be widely adopted in compilers, they must be

present significant advantages of existing formal methods, without introducing errors.

Chapter 5 extends the application of recurrent neural networks to the domain of com-

piler testing to address this adoption challenge. Development of the state-of-the-art

compiler test case generator CSmith was a significant undertaking, comprising over

50,000 lines of handwritten code [Lid+15; Yan+11]. The technique presented in this

thesis presents an enormous reduction in developer effort compared to the state-of-

the-art grammar-based approach. It is implemented in as few as 500 lines of code.

This 100× reduction in code size is complemented by improved portability of the im-

plementation, with only parts of the stack being specific to the input language of the

compiler being tested. The remainder being language-agnostic. This lowers the barrier

to entry for developing new fuzzers for addressing the compiler validation problem.

7.1. Contributions 135

The portability of the approach is demonstrated by extending the generator from

its initial implementation targeting OpenCL to the Solidity programming language.

This extension required only 18 lines of code. By contrast, extending a state-of-the-art

generator from C to OpenCL required over 8000 lines of code [Lid+15].

Despite its simplicity, the proposed technique is effective. To date, 67 new bugs

in commercial and open source OpenCL compilers have been identified and reported.

Many of the bugs identified could not be exposed by state-of-the-art approaches due to

the limitations in the expressiveness of prior grammar-based approaches. The expres-

siveness of the generated test cases is limited only by the code that has been uploaded

to GitHub; this led to unintentional outcomes such as exploiting compiler-specific

features to expose bugs in the error handling of compilers’ intrinsics. By enabling

probabilistic machine learning systems to be developed at such low cost and without

compromising the correctness of the differential testing approach, this work aims to

address the challenge of encouraging adoption of machine learning practices by the

compiler community, described in Section 1.2.3.

7.1.3 Automatic Compiler Optimisation Tuning

A significant challenge facing machine learning techniques is the design of features.

Constructing program features is time-consuming and error-prone. Additionally, the

choice of features typically couples the learning system tightly with the compiler im-

plementation. This means that new features must be computed and the model retrained

with every change to the compiler. Chapter 6 proposes a technique to address both is-

sues. Instead of extracting numerical representations of programs, a learning system

is developed that permits the entire source code of the program to be fed directly as

input. This simpler approach decouples the learning systems from the compilers’ in-

ternal representations.

The technique is evaluated for two distinct optimisation problems, finding that in

both cases, the approach is able to match or outperform the state-of-the-art approach

using hand-crafted features, achieving speedups of 1.14× and 1.05×. This is in spite

of using the same model parameters for both problems, without any specialising of the

structure of the learning system to the task being learned. In abstracting the structure of

the solution from the problem, the approach enables the novel transfer of information

learned for one task to the other. By enabling transfer learning, the performance of

a predictive model improves by a further 1.06×, despite only being provided with

136 Chapter 7. Conclusions

information learned for a different optimisation task.

In bypassing the need to engineer features, the proposed technique simplifies the

construction of optimisation heuristics through machine learning, while leading to

higher performance in the heuristics themselves. This addresses the feature design

challenge described in Section 1.2.2. Since compilers typically contain hundreds or

even thousands of distinct optimisation heuristics, techniques that enable the sharing

of information between tasks, like the one proposed in this work, are prudent to the

practical development of machine learning in optimising compilers.

7.2 Critical Analysis

This section contains a critical analysis of the techniques presented in this work.

7.2.1 Generative Models for Source Code

Chapters 4 and 5 develop generative models that enable the synthesis of more human-

like programs than current state-of-the-art program generators, and without the expert

guidance required by template-based generators, but they have limitations. The tech-

nique of seeding the language models with the start of a function means that user-

defined types or calls to user-defined functions are not supported. In turn, this restricts

the inputs that can be fed to generated programs. Currently, only scalars and arrays

may be used as inputs, whereas 6 (2.3%) of the OpenCL benchmark kernels listed in

Table 4.3 use irregular data types as inputs. This may be addressed through recursive

program synthesis, whereby a call to a user-defined function or unrecognised type will

trigger candidate functions and type definitions to be synthesised.

This work evaluates the use of recurrent neural networks for generating programs in

the OpenCL and Solidity programming languages. Although the languages are dissim-

ilar (one extends the C programming language, the other is derived from JavaScript), it

is unclear whether the generative modelling approach will prove effective for all possi-

ble grammars. Unlike approaches which generate programs by enumerating randomly

from a specification of the programming language grammar, the ability to generate

programs of arbitrary syntaxes cannot be guaranteed.

By learning from a corpus of programs assembled from GitHub, the model induces

the biases of programs on GitHub. This makes the implicit assumption that code up-

loaded to GitHub is representative of the real-world usage of a programming language.

7.2. Critical Analysis 137

The contents of the GitHub corpus used in this work were only lightly vetted to

ensure that it did not contain programs that would later be used to evaluate the model.

This did not preclude the model training on programs that may not be considered rep-

resentative of true handwritten code. For example, inspecting the corpus revealed a

small number of large, automatically generated programs which may bias the genera-

tor. Additionally, test cases for an OpenCL static analysis tool were found that delib-

erately contain runtime defects. While the corpus was filtered to ensure that training

programs were syntactically valid, no checks were made to ensure that programs used

for training had correct semantics.

7.2.2 Rejection Sampling for Program Generation

The techniques presented in this work sample recurrent neural networks on a per-token

basis to generate programs. Once an entire sample has been generated, the sample is

checked to see if it is a valid program. If not, the entire sample is discarded. Al-

though automatic, this rejection sampling approach is wasteful. Grammar-based sam-

pling approaches have been proposed that could increase the likelihood of generating

a valid program through masked sampling [Dye+16]. Of course, this would make the

generator more complicated. Ultimately there is a trade-off between implementation

complexity and sampling efficiency. This work emphasises simplicity.

Moreover, rejection sampling results in a bias towards shorter programs. This is

because, on average, the probability that a sample is a valid program decreases with

each additional token. This skews the distribution of generated programs away from

the training programs. This issue, arising from rejection sampling, can coincidentally

be alleviated through further rejection sampling. To correct the bias towards shorter

programs, an additional filter could be placed on the output of the generative model

that discards samples with a random probability inversely proportional to their length.

By removing more short samples than long, the bias in the distribution is corrected,

albeit at the cost of fewer accepted samples.

7.2.3 Characterisation of OpenCL Compiler Bugs

Chapter 5 presents DeepSmith, a tool for generating compiler test cases, and compares

it against the state-of-the-art CLSmith. For each approach, the number of bug-exposing

test cases is reported. However, it is not possible to determine which generator identi-

fied more unique bugs. To determine this, one would need to de-duplicate the counts

138 Chapter 7. Conclusions

by locating the exact bug-exposing property of each test case and correlating it with

a compiler defect. There are two challenges preventing this: the first is the amount

of compute required to perform automated test case reduction in many thousands of

CLSmith programs; the second is that in the general case it is not possible to identify

the root cause of a compiler bug without access to its source code.

While it is not possible to compare the rate at which DeepSmith and CLSmith

identify unique bugs, the properties of each approach allow partial characterisation of

the bugs that can be found. DeepSmith is capable of exposing bugs that CLSmith

cannot; for example, by generating plausible but malformed inputs to expose bugs in

compiler error handling, or by generating programs with thread-dependent control-

flow which CLSmith’s static analyses prevent.

Where de-duplication of underlying bugs is possible (such as by comparing com-

piler stack traces), DeepSmith matches or exceeds CLSmith’s findings; however, CL-

Smith is also capable of exposing bugs that DeepSmith cannot. For example, CLSmith

programs make heavy use of structs, which DeepSmith does not support. As such I

believe the approach presented in this work to be complementary to the prior art. The

functionality of DeepSmith and CLSmith overlap, but neither is a superset of the other.

7.2.4 Driving arbitrary OpenCL kernels

This thesis presents a technique for driving arbitrary OpenCL kernels, provided they

have regular scalar or array inputs. This host driver accepts as input an OpenCL kernel,

which it then compiles, produces input data sets, and runs the compiled kernel using

the data sets. The host driver generates data sets from uniform random distributions, as

do many OpenCL benchmark suites. For cases where non-uniform inputs are required

(e.g. profile-directed feedback), an alternative methodology for generating inputs must

be adopted.

7.2.5 Modelling Program Semantics from Syntactic Sequences

Chapter 6 feeds a sequence of program tokens into a recurrent neural network to pre-

dict an optimisation decision that should be made on it. By treating the serialised

representation of a program (its source code) as the sequence of syntactic tokens,

the technique is vulnerable to changes in code order, since p(y|[xxx(1),xxx(2),xxx(3)]) 6=
p(y|[xxx(3),xxx(2),xxx(1)]). The text inputs used to evaluate the approach are single kernels.

It is not clear how the approach will respond to multi-procedure inputs, where the or-

7.3. Future Work 139

der that procedures are declared may have a large impact on the pattern of activations

produced in the recurrent neural network.

A common criticism of machine learning systems is that they are black boxes.

When the system fails to produce the desired result, there is no obvious method to

correct the system so as to prevent similar errors. Still, in traditional machine learning,

it may be possible to correct problems by adjusting the features. In an absence of

features, there are fewer meaningful ways to improve a model based on an analysis of

failure cases.

7.3 Future Work

This section outlines four promising avenues for future research enabled by this thesis.

7.3.1 Guided Program Synthesis to Minimise Benchmarking Cost

This thesis presents a technique for the unguided synthesis of compiler benchmarks.

Using the technique may provide a fine-grained exploration of the space of representa-

tive programs. For some use cases, more efficient use of data will be achieved through

directed program generation.

One approach to direct program generation could be to employ a rejection filter that

tests for the presence of a property of interest and rejects programs that do not satisfy

this property. Another approach would be to train the generative model simultaneously

for both the structure of programs (as is done in this work), along with a representation

of the properties of interest (such as a feature vector). At sample time, the feature

values of the desired program could be used as input to steer the program generation.

A third approach would use the learned language model not to generate programs, but

to guide an existing program generator by biasing the weights of grammar productions.

If successful, such a technique would enable the exploration of larger feature spaces

than is currently possible by efficiently navigating the generation of benchmarks to

map out the decision surface. Additional insight into the behaviour of a model and

its failure cases would be enabled by steering synthesis towards the parts of the space

where the model has the lowest confidence, or parts of the space where the model

frequently makes wrong predictions.

140 Chapter 7. Conclusions

7.3.2 Neural Model Selection through Adversarial Games

Section 4.5 employs Turing tests to evaluate the quality of synthetic code. The task

presented to human participants was to identify whether a series of code snippets were

written by hand or machine. This was used to evaluate whether or not the model pro-

duced human-like output. In future work, this approach could be extended to aid in the

challenging task of model selection by instead presenting the participants with pairs

of samples side by side, and asking the participant to select the sample which is more

human-like. If the two samples were both generated by different configurations of

a generative model, this would provide a means to compare generative models on the

otherwise hard-to-assess quality of “humanness”. The selection of the best model from

a pool of candidates is thus turned into a series of zero-sum games, where each game

pits a single sample from a pair of generative models head-to-head with a human se-

lecting the winner, and an Elo rating can be used to assign scores and pair matches. The

limiting factor of this approach would likely be the availability of human participants.

Generative Adversarial Networks (GANs) [Goo+14] employ a similar adversarial

approach, but use a second artificial neural network as a discriminative adversary. The

generator and discriminator networks are trained concurrently; the generator is trained

to maximise the probability of failure in the discriminator, the discriminator is trained

to minimise this probability. This approach is a good fit for the domain of program

generation, though filtering of the generator outputs to check for program correctness

may be required to prevent the generator training to a local maxima where the output is

hard to distinguish from the test set, but rarely contains meaningful program semantics.

7.3.3 Learning Representations for Dynamic Program Inputs

Chapter 6 presents an approach for learning optimisation heuristics from the raw rep-

resentation of a program, but in the presence of dynamic properties, traditional feature

extraction was used. For example, feeding in the size of input data sets. In future work,

this approach could be extended to also account for dynamic properties. Unlike with

program source code, it is not clear what the raw representation of program inputs may

be as there is no equivalent human-interpretable representation of program data. One

approach could be to model the sequence of bytes that the program reads and writes,

though this may introduce a high overhead for runtime instrumentation [GSB14].

7.4. Summary 141

7.3.4 Towards General-Purpose Program Comprehension

The techniques presented in this thesis apply deep learning techniques to the task of

modelling the behaviour of programs. For each task, be it program generation or opti-

misation, artificial neural networks are trained from scratch. Chapter 6 explores the use

of transfer learning to seed an artificial neural network with information from another

task. Future work could explore this idea further by iteratively training and retraining

a single network across a wide range of tasks, with the goal of finding a common set

of model parameters to be used as an effective base for each task.

An ambitious goal would be the development and distribution of a model architec-

ture for general-purpose program comprehension. Such a system would enable, with

little effort, a single model to be re-purposed for a variety of compiler tasks. This is

analogous to the widespread distribution of pre-trained state-of-the-art models in the

field of image recognition. If developing an image classifier, a user may start by re-

training an existing model such as ResNet [He+16], rather than constructing a model

from scratch. This drastically simplifies the adoption of machine learning for image

classification as the model architecture has been pre-selected and tuned, and reduces

the amount of training data required.

A prerequisite for developing this system will be applying techniques such as those

proposed in this thesis to a wide range of different compiler tasks. My hope in publicly

releasing all of the software developed during the course of my research is to enable

and expedite this discovery in other domains.

7.4 Summary

An optimising compiler’s critical role in translating software to machine code must be

performed without error, while maximising the performance and efficiency of the gen-

erated code. This is a challenging task that is only getting harder as the complexity and

number of architectures that must be supported by compilers grows. Addressing this

challenge requires developing new tools that lower the cost of compiler construction.

This thesis leverages deep learning to develop new methodologies for program

generation and optimisation that are dramatically simpler than established approaches.

The methodologies are applied across two domains: compiler optimisations and com-

piler validation, and in both cases the proposed approaches outperform state-of-the-art

techniques that are the culmination of years of development.

142 Chapter 7. Conclusions

The outcomes demonstrated in this thesis open new lines of research into the mod-

elling, optimisation, and generation of programs through deep learning. The prelim-

inary results are promising and there is much work to be done. The development of

automated learning systems capable of reasoning about complex program semantics

would enable a dramatic rethinking of compiler construction methodologies. Promis-

ing future research directions include adapting these techniques to new problem do-

mains, further reducing development costs through end-to-end machine learning, and

developing improved program representations for artificial neural networks that over-

come limitations in current approaches. My hope in publicly releasing1 all of the code

and data that has made up the work in this thesis is to expedite discovery in other

domains.

1All of the code and data for this thesis is available at: https://chriscummins.cc/phd.

https://chriscummins.cc/phd

Bibliography

[Aba+16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,

S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,

M. Wicke, Y. Yu, and X. Zheng. “TensorFlow: A System for Large-scale

Machine Learning”. In: USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI). 2016.

[Aga+06] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, J.

Thomson, M. Toussaint, and C. K. I. Williams. “Using Machine Learn-

ing to Focus Iterative Optimization”. In: International Symposium on

Code Generation and Optimization (CGO). IEEE, 2006.

[All+14] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. “Learning Natural

Coding Conventions”. In: ACM SIGSOFT International Symposium on

the Foundations of Software Engineering (FSE). ACM, 2014.

[All+18] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton. “A Survey of Ma-

chine Learning for Big Code and Naturalness”. In: ACM Computing Sur-

veys (CSUR) 51.4 (2018).

[All19] M. Allamanis. “The Adverse Effects of Code Duplication in Machine

Learning Models of Code”. In: ACM SIGPLAN International Sympo-

sium on New Ideas, New Paradigms, and Reflections on Programming

and Software. ACM, 2019.

[And19] A. S. G. Andrae. “Prediction Studies of Electricity Use of Global Com-

puting in 2030”. In: International Journal of Science and Engineering

Investigations (IJSEI) 8.86 (2019).

[Ans+09] A. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,

and S. Amarasinghe. “PetaBricks: A Language and Compiler for Algo-

143

144 BIBLIOGRAPHY

rithmic Choice”. In: ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI). ACM, 2009.

[Ans+13] J. Ansel, S. Kamil, K. Veeramachaneni, U. O. Reilly, and S. Amaras-

inghe. “OpenTuner: An Extensible Framework for Program Autotun-

ing”. In: International Conference on Parallel Architectures and Compi-

lation Techniques (PACT). ACM, 2013.

[Ans14] J. Ansel. “Autotuning Programs with Algorithmic Choice”. PhD thesis.

Massachusetts Institute of Technology, 2014.

[APS16] M. Allamanis, H. Peng, and C. Sutton. “A Convolutional Attention Net-

work for Extreme Summarization of Source Code”. In: International

Conference on Machine Learning (ICML). PMLR, 2016.

[AR12] J. Ansel and U. O. Reilly. “SiblingRivalry: Online Autotuning Through

Local Competitions”. In: International Conference on Compilers, Archi-

tectures and Synthesis for Embedded Systems (CASES). ACM, 2012.

[AS13] M. Allamanis and C. Sutton. “Mining Source Code Repositories at Mas-

sive Scale using Language Modeling”. In: Working Conference on Min-

ing Software Repositories (MSR). 2013.

[Ash+17] A. H. Ashouri, A. Bignoli, G. Palermo, C. Silvano, S. Kulkarni, and J.

Cavazos. “MiCOMP: Mitigating the Compiler Phase-ordering Problem

Using Optimization Sub-sequences and Machine Learning”. In: ACM

Transactions on Architecture and Code Optimization (TACO) (2017).

[Ash+18] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano. “A

Survey on Compiler Autotuning using Machine Learning”. In: ACM

Computing Surveys (CSUR) 51.5 (2018).

[Bad+19] J. Bader, A. Scott, M. Pradel, and S. Chandra. “Getafix: Learning to Fix

Bugs Automatically”. In: arXiv:1902.06111 (2019).

[Bai+14] R. Baishakhi, D. Posnett, V. Filkov, and P. Devanbu. “A Large Scale

Study of Programming Languages and Code Quality in Github”. In:

ACM SIGSOFT International Symposium on the Foundations of Soft-

ware Engineering (FSE). ACM, 2014.

BIBLIOGRAPHY 145

[Bai+91] D. H. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,

R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Si-

mon, V. Venkatakrishnan, and S. Weeratunga. “The NAS Parallel Bench-

marks”. In: International Journal of High Performance Computing Ap-

plications (IJHPCA) 5.3 (1991).

[Bas+17] O. Bastani, R. Sharma, A. Aiken, and P. Liang. “Synthesizing Program

Input Grammars”. In: ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI). ACM, 2017.

[BCD12] A. Betts, N. Chong, and A. Donaldson. “GPUVerify: A Verifier for GPU

Kernels”. In: Object-oriented Programming Systems, Languages and Ap-

plications (OOPSLA). ACM, 2012.

[BDB00] V. Bala, E. Duesterwald, and S. Banerjia. “Dynamo: A Transparent Dy-

namic Optimization System”. In: ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI). ACM, 2000.

[BDK14] M. Baroni, G. Dinu, and G. Kruszewski. “Don’t Count, Predict! A Sys-

tematic Comparison of Context-Counting vs . Context-Predicting Se-

mantic Vectors”. In: Annual Meeting of the Association for Computa-

tional Linguistics (ACL). 2014.

[Ber+10] J. L. Berral, Í. Goiri, R. Nou, F. Julià, J. Guitart, R. Gavaldà, and J. Tor-

res. “Towards Energy-aware Scheduling in Data Centers using Machine

Learning”. In: International Conference on energy-Efficient Computing

and Networking (e-Energy). ACM, 2010.

[Ber+11] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delal-

leau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A. Bergeron, and Y.

Bengio. “Theano: Deep Learning on GPUs with Python”. In: BigLearn-

ing Workshop. 2011.

[Ber+12] R. Bertran, A. Buyuktosunoglu, M. S. Gupta, M. Gonzalez, and P. Bose.

“Systematic Energy Characterization of CMP/SMT Processor Systems

via Automated Micro-Benchmarks”. In: International Symposium on Mi-

croarchitecture (MICRO). IEEE, 2012.

[BJ05] R. H. Bell and Lizy K. John. “Improved Automatic Testcase Synthe-

sis for Performance Model Validation”. In: ACM/IEEE Supercomputing

Conference (SC). 2005.

146 BIBLIOGRAPHY

[BJH18] T. Ben-Nun, A. S. Jakobovits, and T. Hoefler. “Neural Code Comprehen-

sion: A Learnable Representation of Code Semantics”. In: Conference

on Neural Information Processing Systems (NeurIPS). 2018.

[BJR19] H. Babii, A. Janes, and R. Robbes. “Modeling Vocabulary for Big Code

Machine Learning”. In: arXiv:1904.01873 (2019).

[Bod+98] F. Bodin, T. Kisuki, P. M. W. Knijnenburg, M. O’Boyle, and E. Rohou.

“Iterative Compilation in a Non-linear Optimisation Space”. In: Interna-

tional Conference on Parallel Architectures and Compilation Techniques

(PACT). ACM, 1998.

[Bow+16] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S.

Bengio. “Generating Sentences from a Continuous Space”. In: SIGNLL

Conference on Computational Natural Language Learning (CONLL).

2016.

[Bro+18] M. Brockschmidt, M. Allamanis, A. L. Gaunt, and O. Polozov. “Gener-

ative Code Modeling with Graphs”. In: arXiv:1805.08490 (2018).

[BS97] A. S. Boujarwah and K. Saleh. “Compiler Test Case Generation Meth-

ods: A Survey and Assessment”. In: Information and Software Technol-

ogy 39.9 (1997).

[BSF94] Y. Bengio, P. Simard, and P. Frasconi. “Learning Long-Term Depen-

dencies with Gradient Descent is Difficult”. In: IEEE Transactions on

Neural Networks 5.2 (1994).

[Cav+06] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. O’Boyle, G. Fursin,

and O. Temam. “Automatic Performance Model Construction for the

Fast Software Exploration of New Hardware Designs”. In: International

Conference on Compilers, Architectures and Synthesis for Embedded

Systems (CASES). 2006.

[CDP15] K. Claessen, J. Duregård, and M. H. Pałka. “Generating Constrained

Random Data with Uniform Distribution”. In: Journal of Functional

Programming 25 (2015).

[CFL12] A. Collins, C. Fensch, and H. Leather. “Auto-Tuning Parallel Skele-

tons”. In: Parallel Processing Letters 22.02 (2012).

BIBLIOGRAPHY 147

[CGA15] A. Chiu, J. Garvey, and T. S. Abdelrahman. “Genesis: A Language for

Generating Synthetic Training Programs for Machine Learning”. In: ACM

International Conference on Computing Frontiers (CF). ACM, 2015.

[Cha+09] C. Chan, H. Ansel, Y. L. Wong, S. Amarasinghe, and A. Edelman. “Au-

totuning Multigrid with PetaBricks”. In: ACM/IEEE Supercomputing

Conference (SC). 2009.

[Che+09] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K.

Skadron. “Rodinia: A Benchmark Suite for Heterogeneous Computing”.

In: International Symposium on Workload Characterization (IISWC).

IEEE, 2009.

[Che+10] Y. Chen, Y. Huang, L. Eeckhout, G. Fursin, L. Peng, O. Temam, and

C. Wu. “Evaluating Iterative Optimization Across 1000 Data Sets”. In:

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation (PLDI). ACM, 2010.

[Che+13] Y. Chen, A. Groce, C. Zhang, W. Wong, X. Fern, E. Eide, and J. Regehr.

“Taming Compiler Fuzzers”. In: ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI). ACM, 2013.

[Che+16a] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie.

“An Empirical Comparison of Compiler Testing Techniques”. In: Inter-

national Conference on Software Engineering (ICSE). 2016.

[Che+16b] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao. “Coverage-Directed Differen-

tial Testing of JVM Implementations”. In: ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI). ACM,

2016.

[Che+17] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie. “Learning to

Prioritize Test Programs for Compiler Testing”. In: International Con-

ference on Software Engineering (ICSE). 2017.

[Che+19a] Z. Chen, S. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk, and

M. Monperrus. “SequenceR: Sequence-to-Sequence Learning for End-

to-End Program Repair”. In: TSE (2019).

[Che+19b] L. Cheng, Y. Zhang, Y. Zhang, C. Wu, Z. Li, Y. Fu, and H. Li. “Optimiz-

ing Seed Inputs in Fuzzing with Machine Learning”. In: arXiv:1902.02538

(2019).

148 BIBLIOGRAPHY

[CM19] Z. Chen and M. Monperrus. “A Literature Study of Embeddings on

Source Code”. In: arXiv:1904.03061 (2019).

[Col+13] A. Collins, C. Fensch, H. Leather, and M. Cole. “MaSiF: Machine Learn-

ing Guided Auto-tuning of Parallel Skeletons”. In: International Confer-

ence on High Performance Computing (HiPC). IEEE, 2013.

[Con+16] J. Cong, M. Huang, D. Wu, and C. H. Yu. “Heterogeneous Datacenters:

Options and Opportunities”. In: Design Automation Conference (DAC).

ACM, 2016.

[CSA18] Milan Cvitkovic, Badal Singh, and Anima Anandkumar. “Deep Learn-

ing On Code with an Unbounded Vocabulary”. In: Machine Learning 4

(2018).

[Cum+16a] C. Cummins, P. Petoumenos, M. Steuwer, and H. Leather. “Autotuning

OpenCL Workgroup Size for Stencil Patterns”. In: International Work-

shop on Adaptive Self-tuning Computing Systems (ADAPT). 2016.

[Cum+16b] C. Cummins, P. Petoumenos, M. Steuwer, and H. Leather. “Towards

Collaborative Performance Tuning of Algorithmic Skeletons”. In: High-

Level Programming for Heterogeneous and Hierarchical Parallel Sys-

tems (HLPGPU). 2016.

[Cum+17a] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. “End-to-end

Deep Learning of Optimization Heuristics”. In: International Confer-

ence on Parallel Architectures and Compilation Techniques (PACT). IEEE,

2017.

[Cum+17b] C. Cummins, P. Petoumenos, W. Zang, and H. Leather. “Synthesizing

Benchmarks for Predictive Modeling”. In: International Symposium on

Code Generation and Optimization (CGO). IEEE, 2017.

[Cum+18] C. Cummins, P. Petoumenos, A. Murray, and H. Leather. “DeepSmith:

Compiler Fuzzing through Deep Learning”. In: ACACES. 2018.

[CW76] H. J. Curnow and B. A. Wichmann. “A Synthetic Benchmark”. In: Com-

puter 19.1 (1976).

[Dan+10] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-

ford, V. Tipparaju, and J. S. Vetter. “The Scalable HeterOgeneous Com-

puting (SHOC) Benchmark Suite”. In: Workshop on General-Purpose

Computation on Graphics Processing Units (GPGPU). ACM, 2010.

BIBLIOGRAPHY 149

[Dav01] A. David. SLOCCount. 2001.

[DAY19] Y. David, U. Alon, and E. Yahav. “Neural Reverse Engineering of Stripped

Binaries”. In: arXiv:1902.09122 (2019).

[DEK11] U. Dastgeer, J. Enmyren, and C. W. Kessler. “Auto-tuning SkePU: a

Multi-Backend Skeleton Programming Framework for Multi-GPU Sys-

tems”. In: International Workshop on Multicore Software Engineering

(IWMSE). ACM, 2011.

[Din+15] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U. O’Reilly, and S.

Amarasinghe. “Autotuning Algorithmic Choice for Input Sensitivity”.

In: ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). ACM, 2015.

[DJW12] J. Duregard, P. Jansson, and M. Wang. “Feat: Functional Enumeration of

Algebraic Types”. In: Haskell. ACM, 2012.

[DMH19] Y. Ding, N. Mishra, and H. Hofmann. “Generative and Multi-phase Learn-

ing for Computer Systems Optimization”. In: International Symposium

on Computer Architecture (ISCA). 2019.

[DR16] M. Dhok and M. K. Ramanathan. “Directed Test Generation to Detect

Loop Inefficiencies”. In: ACM SIGSOFT International Symposium on

the Foundations of Software Engineering (FSE). ACM, 2016.

[Dub+07] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, and O. Temam.

“Fast Compiler Optimisation Evaluation Using Code-Feature Based Per-

formance Prediction”. In: ACM International Conference on Computing

Frontiers (CF). ACM, 2007.

[Dub+09] C. Dubach, T. M. Jones, E. V. Bonilla, G. Fursin, and M. O’Boyle.

“Portable Compiler Optimisation Across Embedded Programs and Mi-

croarchitectures using Machine Learning”. In: International Symposium

on Microarchitecture (MICRO). ACM, 2009.

[Dye+16] C. Dyer, A. Kuncoro, M. Ballesteros, and N. A. Smith. “Recurrent Neu-

ral Network Grammars”. In: Annual Conference of the North Ameri-

can Chapter of the Association for Computational Linguistics (NAACL-

HLT). 2016.

150 BIBLIOGRAPHY

[FE15] T. L. Falch and A. C. Elster. “Machine Learning Based Auto-tuning for

Enhanced OpenCL Performance Portability”. In: International Parallel

& Distributed Processing Symposium (IPDPSW). IEEE, 2015.

[Fer+12] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-

jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. “Clearing

the Clouds: A Study of Emerging Scale-out Workloads on Modern Hard-

ware”. In: International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS). ACM, 2012.

[Fet+15] B. Fetscher, K. Claessen, M. Pałka, J. Hughes, and R. B. Findler. “Mak-

ing Random Judgments: Automatically Generating Well-Typed Terms

from the Definition of a Type-System”. In: European Symposium on Pro-

gramming (ESOP). 2015.

[FT10] G. Fursin and O. Temam. “Collective Optimization: A Practical Col-

laborative Approach”. In: ACM Transactions on Architecture and Code

Optimization (TACO) 7.4 (2010).

[Fur+11] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam, M.

Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois, F. Bodin,

P. Barnard, E. Ashton, E. Bonilla, J. Thomson, C. K. I. Williams, and

M. O’Boyle. “Milepost GCC: Machine Learning Enabled Self-tuning

Compiler”. In: International Journal of Parallel Programming (IJPP)

39.3 (2011).

[Fur+14] G. Fursin, R. Miceli, A. Lokhmotov, M. Gerndt, M. Baboulin, A. D.

Malony, Z. Chamski, D. Novillo, and D. Del Vento. “Collective Mind:

Towards practical and collaborative auto-tuning”. In: Scientific Program-

ming 22.4 (2014).

[GA15] J. D. Garvey and T. S. Abdelrahman. “Automatic Performance Tuning of

Stencil Computations on GPUs”. In: International Conference on Paral-

lel Processing (ICPP). ACM, 2015.

[GAL14] E. Guzman, D. Azócar, and Y. Li. “Sentiment Analysis of Commit Com-

ments in GitHub: an Empirical Study”. In: Working Conference on Min-

ing Software Repositories (MSR). 2014.

BIBLIOGRAPHY 151

[Gan+09] A. Ganapathi, K. Datta, A. Fox, and D. Patterson. “A Case for Machine

Learning to Optimize Multicore Performance”. In: USENIX conference

on Hot topics in parallelism (HotPar). 2009.

[Gao+15] H. Gao, J. Mao, J. Zhou, Z. Huang, L. Wang, and W. Xu. “Are You Talk-

ing to a Machine? Dataset and Methods for Multilingual Image Question

Answering”. In: Conference on Neural Information Processing Systems

(NIPS). 2015.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,

2016.

[GEB15] L. A. Gatys, A. S. Ecker, and M. Bethge. “A Neural Algorithm of Artis-

tic Style”. In: arXiv:1508.06576 (2015).

[Geo+18] K. Georgiou, C. Blackmore, S. Xavier-de-Souza, and K. Eder. “Less is

More: Exploiting the Standard Compiler Optimization Levels for Better

Performance and Energy Consumption”. In: International Workshop on

Software and Compilers for Embedded Systems (SCOPES). 2018.

[GH15] A. Gandomi and M. Haider. “Beyond the Hype: Big data concepts, meth-

ods, and analytics”. In: International Journal of Information Manage-

ment (IJIM) (2015).

[GKS05] P. Godefroid, N. Klarlund, and K. Sen. “DART: Directed Automated

Random Testing Patrice”. In: ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI). ACM, 2005.

[Gla19] Glassdoor. Software Engineer Salaries in United States. 2019. URL: https:

//www.glassdoor.com (visited on 08/15/2019).

[Goo+14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.

Ozair, A. Courville, and Y. Bengio. “Generative Adversarial Networks”.

In: Conference on Neural Information Processing Systems (NIPS). 2014.

[Gos+10] N. Goswami, R. Shankar, M. Joshi, and T. Li. “Exploring GPGPU work-

loads: Characterization methodology, analysis and microarchitecture eval-

uation implications”. In: International Symposium on Workload Charac-

terization (IISWC). 2010.

[GPS17] P. Godefroid, H. Peleg, and R. Singh. “Learn&Fuzz: Machine Learning

for Input Fuzzing”. In: IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE). IEEE, 2017.

https://www.glassdoor.com
https://www.glassdoor.com

152 BIBLIOGRAPHY

[Gra+12] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos.

“Auto-tuning a High-Level Language Targeted to GPU Codes”. In: In-

novative Parallel Computing (InPar). 2012.

[Gra12] A. Graves. “Supervised Sequence Labelling with Recurrent Neural Net-

works”. PhD thesis. Technical University of Munich, 2012.

[Gra13] A. Graves. “Generating Sequences with Recurrent Neural Networks”.

In: arXiv:1308.0850 (2013).

[Gre+15a] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-

huber. “LSTM: A Search Space Odyssey”. In: arXiv:1503.04069 (2015).

[Gre+15b] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra.

“DRAW: A Recurrent Neural Network For Image Generation”. In: arXiv:1502.04623

(2015).

[GS05] A. Graves and J. Schmidhuber. “Framewise Phoneme Classification with

Bidirectional LSTM and Other Neural Network Architectures”. In: Neu-

ral Networks 18.5 (2005).

[GSB14] R. Gad, T. Suss, and A. Brinkmann. “Compiler Driven Automatic Ker-

nel Context Migration for Heterogeneous Computing”. In: International

Conference on Distributed Computing Systems (IDCS). IEEE, 2014.

[Gu+16] X. Gu, H. Zhang, D. Zhang, and S. Kim. “Deep API Learning”. In: ACM

SIGSOFT International Symposium on the Foundations of Software En-

gineering (FSE). ACM, 2016.

[GWO13] D. Grewe, Z. Wang, and M. O’Boyle. “Portable Mapping of Data Paral-

lel Programs to OpenCL for Heterogeneous Systems”. In: International

Symposium on Code Generation and Optimization (CGO). IEEE, 2013.

[Han70] K. V. Hanford. “Automatic Generation of Test Cases”. In: IBM Systems

Journal 9.4 (1970).

[Has+15] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S.

Ullah Khan. “The Rise of ”Big Data” on Cloud Computing: Review and

Open Research Issues”. In: Information Systems 47 (2015).

[He+16] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image

Recognition”. In: Conference on Computer Vision and Pattern Recogni-

tion (CVPR). IEEE, 2016.

BIBLIOGRAPHY 153

[Hen+18] J. Henkel, S. K. Lahiri, B. Liblit, and T. Reps. “Code Vectors: Under-

standing Programs Through Embedded Abstracted Symbolic Traces”.

In: ACM SIGSOFT International Symposium on the Foundations of Soft-

ware Engineering (FSE). 2018.

[HHZ12] C. Holler, K. Herzig, and A. Zeller. “Fuzzing with Code Fragments”. In:

{USENIX} Security Security Symposium. 2012.

[HKP11] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques.

Elsevier, 2011.

[Hor91] K. Hornik. “Approximation Capabilities of Multilayer Feedforward Net-

works”. In: Neural Networks 4.2 (1991).

[HOT06] G. E Hinton, S. Osindero, and Y. Teh. “A Fast Learning Algorithm for

Deep Belief Nets”. In: Neural Computation 18.7 (2006).

[HOY17] K. Heo, H. Oh, and K. Yi. “Machine-Learning-Guided Selectively Un-

sound Static Analysis”. In: International Conference on Software Engi-

neering (ICSE). 2017.

[HS97] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. In: Neu-

ral Computation 9.8 (1997).

[IS15] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift”. In: International

Conference on Machine Learning (ICML). PMLR, 2015.

[JA19] Y. Jitsunari and Y. Arahori. “Coverage-Guided Learning-Assisted Grammar-

Based Fuzzing”. In: International Conference on Software Testing, Ver-

ification and Validation Workshops (ICSTW). IEEE, 2019.

[Jia+10] Y. Jiang, E. Z. Zhang, K. Tian, F. Mao, M. Gethers, X. Shen, and Y. Gao.

“Exploiting Statistical Correlations for Proactive Prediction of Program

Behaviors”. In: International Symposium on Code Generation and Op-

timization (CGO). IEEE, 2010.

[Jol11] I. Jolliffe. Principal Components Analysis. Springer, 2011.

[Jos+08] A. M. Joshi, L. Eeckhout, L. K. Johnz, and C. Isen. “Automated Mi-

croprocessor Stressmark Generation”. In: International Symposium on

High-Performance Computer Architecture (HPCA). 2008.

154 BIBLIOGRAPHY

[Jou+17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C.

Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.

Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D.

Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A.

Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,

D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. Mackean, A. Mag-

giore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,

K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M.

Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J.

Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,

E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and G. H. Yoon.

“In-Datacenter Performance Analysis of a Tensor Processing Unit”. In:

International Symposium on Computer Architecture (ISCA). 2017.

[Joz+16] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. “Explor-

ing the Limits of Language Modeling”. In: arXiv:1602.02410 (2016).

[Kal+09] E. Kalliamvakou, L. Singer, G. Gousios, D. M. German, K. Blincoe, and

D. Damian. “The Promises and Perils of Mining GitHub”. In: Working

Conference on Mining Software Repositories (MSR). 2009.

[KB15] D. P. Kingma and J. L. Ba. “Adam: a Method for Stochastic Optimiza-

tion”. In: International Conference on Learning Representations (ICLR).

2015.

[KC12] S. Kulkarni and J. Cavazos. “Mitigating the Compiler Optimization Phase-

Ordering Problem using Machine Learning”. In: Object-oriented Pro-

gramming Systems, Languages and Applications (OOPSLA). ACM, 2012.

[Koc+17] U. Koc, P. Saadatpanah, J. S. Foster, and A. A. Porter. “Learning a Clas-

sifier for False Positive Error Reports Emitted by Static Code Analysis

Tools”. In: Machine Learning and Programming Languages (MAPL).

2017.

[KP05] A. S. Kossatchev and M. A. Posypkin. “Survey of Compiler Testing

Methods”. In: Programming and Computer Software 31.1 (2005).

BIBLIOGRAPHY 155

[Kra+18] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. “The Case

for Learned Index Structures”. In: International Conference on Manage-

ment of Data (SIGMOD). ACM, 2018.

[Kri+18] S. Krishnan, Z. Yang, K. Goldberg, J. M. Hellerstein, and I. Stoica.

“Learning to Optimize Join Queries With Deep Reinforcement Learn-

ing”. In: arXiv:1808.03196 (2018).

[KSX19] L. Kosta, L. Seaman, and H. Xi. “Program Synthesis and Vulnerability

Injection Using a Grammar VAE”. In: Journal of Software 14.6 (2019).

[Kyl+15] S. Kyle, D. Butcher, S. Monteith, H. Leather, B. Franke, D. Butcher,

and S. Monteith. “Application of Domain-aware Binary Fuzzing to Aid

Android Virtual Machine Testing”. In: ACM SIGPLAN/SIGOPS Inter-

national Conference on Virtual Execution Environments (VEE). 2015.

[Lam+15] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. “Combining

Deep Learning with Information Retrieval to Localize Buggy Files for

Bug Reports”. In: IEEE/ACM International Conference on Automated

Software Engineering (ASE). 2015.

[LAS14] V. Le, M. Afshari, and Z. Su. “Compiler Validation via Equivalence

Modulo Inputs”. In: ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI). ACM, 2014.

[LBE15] Z. C. Lipton, J. Berkowitz, and C. Elkan. “A Critical Review of Re-

current Neural Networks for Sequence Learning”. In: arXiv:1506.00019

(2015).

[LBH15] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521.7553

(2015).

[LBO14] H. Leather, E. Bonilla, and M. O’Boyle. “Automatic Feature Generation

for Machine Learning Based Optimizing Compilation”. In: ACM Trans-

actions on Architecture and Code Optimization (TACO) 11.1 (2014).

[LCW12] T. Lozano-Perez, I. J. Cox, and G. T. Wilfong. Autonomous Robot Vehi-

cles. Springer, 2012.

[Lem+18] C. Lemieux, R. Padhye, K. Sen, and D. Song. “PerfFuzz: Automatically

Generating Pathological inputs”. In: ACM SIGSOFT International Sym-

posium on Software Testing and Analysis (ISSTA). ACM, 2018.

156 BIBLIOGRAPHY

[Ler17] X. Leroy. The CompCert C Verified Compiler. 2017.

[LFC13] T. Lutz, C. Fensch, and M. Cole. “PARTANS: An Autotuning Frame-

work for Stencil Computation on Multi-GPU Systems”. In: ACM Trans-

actions on Architecture and Code Optimization (TACO) 9.4 (2013).

[Lid+15] C. Lidbury, A. Lascu, N. Chong, and A. Donaldson. “Many-Core Com-

piler Fuzzing”. In: ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI). ACM, 2015.

[Liu+19] X. Liu, X. Li, R. Prajapati, and D. Wu. “DeepFuzz: Automatic Gener-

ation of Syntax Valid C Programs for Fuzz Testing”. In: Conference on

Artificial Intelligence (AAAI). 2019.

[LSS15a] V. Le, C. Sun, and Z. Su. “Finding Deep Compiler Bugs via Guided

Stochastic Program Mutation”. In: Object-oriented Programming Sys-

tems, Languages and Applications (OOPSLA). 2015.

[LSS15b] V. Le, C. Sun, and Z. Su. “Randomized Stress-Testing of Link-Time

Optimizers”. In: ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA). 2015.

[Lu+17] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. “The Expressive Power of

Neural Networks: A View from the Width”. In: Conference on Neural

Information Processing Systems (NeurIPS). 2017.

[Mat+19] B. Mathis, A. Kampmann, R. Gopinath, M. Höschele, M. Mera, and

A. Zeller. “Parser-Directed Fuzzing”. In: ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI). ACM,

2019.

[McK98] W. M. McKeeman. “Differential Testing for Software”. In: Digital Tech-

nical Journal (DTJ) 10.1 (1998).

[MDO13] A. Magni, C. Dubach, and M. O’Boyle. “A Large-Scale Cross-Architecture

Evaluation of Thread-Coarsening”. In: ACM/IEEE Supercomputing Con-

ference (SC). 2013.

[MDO14] A. Magni, C. Dubach, and M. O’Boyle. “Automatic Optimization of

Thread-Coarsening for Graphics Processors”. In: International Confer-

ence on Parallel Architectures and Compilation Techniques (PACT). ACM,

2014.

BIBLIOGRAPHY 157

[MF13] A. W. Memon and G. Fursin. “Crowdtuning: Systematizing Auto-tuning

using Predictive Modeling and Crowdsourcing”. In: International Con-

ference on Parallel Computing (PARCO). 2013.

[MG18] K. Moren and D. Gohringer. “Automatic Mapping for OpenCL-Programs

on CPU/GPU Heterogeneous Platforms”. In: International Conference

on Computational Science (ICCS). 2018.

[Mik+13] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Distributed Representa-

tions of Words and Phrases and their Compositionality”. In: Conference

on Neural Information Processing Systems (NIPS). 2013.

[Mik10] T. Mikolov. “Recurrent Neural Network based Language Model”. In:

Annual Conference of the International Speech Communication Associ-

ation (Interspeech). 2010.

[Mni+15] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. G. Belle-

mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Pe-

tersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.

Wierstra, S. Legg, and D. Hassabis. “Human-level Control Through Deep

Reinforcement Learning”. In: Nature 518.7540 (2015).

[Mon18] M. Monperrus. “Automatic Software Repair: a Bibliography”. In: ACM

Computing Surveys (CSUR) 51.1 (2018).

[Mou+16] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. “Convolutional Neural

Networks over Tree Structures for Programming Language Processing”.

In: Conference on Artificial Intelligence (AAAI). 2016.

[MPL16] P. Mpeis, P. Petoumenos, and H. Leather. “Iterative Compilation on Mo-

bile Devices”. In: International Workshop on Adaptive Self-tuning Com-

puting Systems (ADAPT). 2016.

[MS10] J. Misra and I. Saha. “Artificial Neural Networks in Hardware: A Survey

of Two Decades of Progress”. In: Neurocomputing 74.1-3 (2010).

[MSD16] P. Micolet, A. Smith, and C. Dubach. “A Machine Learning Approach to

Mapping Streaming Workloads to Dynamic Multicore Processors”. In:

Languages, Compilers, Tools and Theory of Embedded Systems (LCTES).

ACM, 2016.

158 BIBLIOGRAPHY

[Nam+10] M. Namolaru, A. Cohen, G. Fursin, A. Zaks, and A. Freund. “Practical

Aggregation of Semantical Program Properties for Machine Learning

Based Optimization”. In: International Conference on Compilers, Ar-

chitectures and Synthesis for Embedded Systems (CASES). 2010.

[Nau19] M. Naumov. “On the Dimensionality of Embeddings for Sparse Features

and Data”. In: arXiv:1901.02103 (2019).

[NC15] C. Nugteren and V. Codreanu. “CLTune: A Generic Auto-Tuner for OpenCL

Kernels”. In: International Symposium on Embedded Multicore/Many-

core Systems-on-Chip (MCSoC). 2015.

[NH10] V. Nair and G. E. Hinton. “Rectified Linear Units Improve Restricted

Boltzmann Machines”. In: International Conference on Machine Learn-

ing (ICML). PMLR, 2010.

[NHI13] E. Nagai, A. Hashimoto, and N. Ishiura. “Scaling up Size and Num-

ber of Expressions in Random Testing of Arithmetic Optimization of C

Compilers”. In: Workshop on Synthesis And System Integration of Mixed

Information Technologies (SASIMI). 2013.

[NLS16] A. Neelakantan, Q. V. Le, and I. Sutskever. “Neural Programmer: Induc-

ing Latent Programs with Gradient Descent”. In: International Confer-

ence on Learning Representations (ICLR). 2016.

[NPK18] M. Z. Nasrabadi, S. Parsa, and A. Kalaee. “Neural Fuzzing: A Neural

Approach to Generate Test Data for File Format Fuzzing”. In: arXiv:1812.09961

(2018).

[Oda+15] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and S. Naka-

mura. “Learning to Generate Pseudo-Code from Source Code Using Sta-

tistical Machine Translation”. In: IEEE/ACM International Conference

on Automated Software Engineering (ASE). IEEE, 2015.

[Ogi+14] W. F. Ogilvie, P. Petoumenos, Z. Wang, and H. Leather. “Fast Auto-

matic Heuristic Construction Using Active Learning”. In: International

Workshop on Languages and Compilers for Parallel Computing (LCPC).

2014.

[Ogi+17] W. F. Ogilvie, P. Petoumenos, Z. Wang, and H. Leather. “Minimizing the

Cost of Iterative Compilation with Active Learning”. In: International

Symposium on Code Generation and Optimization (CGO). IEEE, 2017.

BIBLIOGRAPHY 159

[Oul+08] E. Ould-Ahmed-Vall, K. A. Doshi, C. Yount, and J. Woodlee. “Charac-

terization of SPEC CPU2006 and SPEC OMP2001: Regression models

and their transferability”. In: International Symposium on Performance

Analysis of Systems and software (ISPASS). IEEE, 2008.

[Pał+11] M. H. Pałka, K. Claessen, A. Russo, and J. Hughes. “Testing an Optimis-

ing Compiler by Generating Random Lambda Terms”. In: International

Conference on Software Engineering (ICSE). 2011.

[Pan+18] R. Panda, S. Song, J. Dean, and L. K. John. “Wait of a Decade: Did SPEC

CPU 2017 Broaden the Performance Horizon?” In: International Sym-

posium on High-Performance Computer Architecture (HPCA). IEEE,

2018.

[PCA12] E. Park, J. Cavazos, and M. A. Alvarez. “Using Graph-Based Program

Characterization for Predictive Modeling”. In: International Symposium

on Code Generation and Optimization (CGO). IEEE, 2012.

[PDL16] M. Pflanzer, A. Donaldson, and A. Lascu. “Automatic Test Case Reduc-

tion for OpenCL”. In: International Workshop on OpenCL (IWOCL).

2016.

[PE06] Z. Pan and R. Eigenmann. “Fast and Effective Orchestration of Com-

piler Optimizations for Automatic Performance Tuning”. In: Interna-

tional Symposium on Code Generation and Optimization (CGO). IEEE,

2006.

[Ped+18] L. Pedrosa, R. Iyer, A. Zaostrovnykh, J. Fietz, and K. Argyraki. “Auto-

mated Synthesis of Adversarial Workloads for Network Functions”. In:

Conference of the ACM Special Interest Group on Data Communication

(SIGCOMM). ACM, 2018.

[Pet+17] T. Petsios, J. Zhao, A. D. Keromytis, and Suman Jana. “SlowFuzz: Auto-

mated Domain-Independent Detection of Algorithmic Complexity Vul-

nerabilities”. In: ACM SIGSAC Conference on Computer and Communi-

cations Security (CCS). ACM, 2017.

[PJ13] S. Purini and L. Jain. “Finding Good Optimization Sequences Cover-

ing Program Space”. In: ACM Transactions on Architecture and Code

Optimization (TACO) (2013).

160 BIBLIOGRAPHY

[PJJ07] Aashish Phansalkar, Ajay Joshi, and Lizy K. John. “Analysis of Re-

dundancy and Application Balance in the SPEC CPU2006 Benchmark

Suite”. In: ACM SIGARCH Computer Architecture News 35.2 (2007).

[PM15] J. Price and S. Mcintosh-Smith. “Oclgrind: An Extensible OpenCL De-

vice Simulator”. In: International Workshop on OpenCL (IWOCL). ACM,

2015.

[PMB13] R. Pacanu, T. Mikolov, and Y. Bengio. “On the Difficulties of Training

Recurrent Neural Networks”. In: International Conference on Machine

Learning (ICML). PMLR, 2013.

[PS18] M. Pradel and K. Sen. “DeepBugs: A Learning Approach to Name-based

Bug Detection”. In: Object-oriented Programming Systems, Languages

and Applications (OOPSLA). ACM, 2018.

[PSP18] H. Peng, Y. Shoshitaishvili, and M. Payer. “T-Fuzz: Fuzzing by Program

Transformation”. In: Symposium on Security and Privacy (SP). 2018.

[Rag+13] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-

rasinghe. “Halide: A Language and Compiler for Optimizing Parallelism,

Locality, and Recomputation in Image Processing Pipelines”. In: ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI). ACM, 2013.

[Rag+17] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein.

“On the Expressive Power of Deep Neural Networks”. In: International

Conference on Machine Learning (ICML). PMLR, 2017.

[Reg+12] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. “Test-

Case Reduction for C Compiler Bugs”. In: ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI). ACM,

2012.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning Represen-

tations by Back-propagating Errors”. In: Nature 323 (1986).

[RJS17] A. Radford, R. Jozefowicz, and I. Sutskever. “Learning to Generate Re-

views and Discovering Sentiment”. In: arXiv:1704.01444 (2017).

[RNL08] C. Runciman, M. Naylor, and F. Lindblad. “SmallCheck and Lazy Small-

Check Automatic Exhaustive Testing for Small Values”. In: Haskell.

ACM, 2008.

BIBLIOGRAPHY 161

[RVK15] V. Raychev, M. Vechev, and A. Krause. “Predicting Program Properties

from ”Big Code””. In: Symposium on Principles of Programming Lan-

guages (POPL). 2015.

[RVY14] V. Raychev, M. Vechev, and E. Yahav. “Code Completion with Statisti-

cal Language Models”. In: ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). ACM, 2014.

[Ryo+08a] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,

and W. W. Hwu. “Optimization Principles and Application Performance

Evaluation of a Multithreaded GPU Using CUDA”. In: ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP).

2008.

[Ryo+08b] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Ueng, J. A.

Stratton, and W. W. Hwu. “Program Optimization Space Pruning for a

Multithreaded GPU”. In: International Symposium on Code Generation

and Optimization (CGO). IEEE, 2008.

[Ryo+15] J. H. Ryoo, S. J. Quirem, M. Lebeane, R. Panda, S. Song, and L. K.

John. “GPGPU Benchmark Suites: How Well Do They Sample the Per-

formance Spectrum?” In: International Conference on Parallel Process-

ing (ICPP). ACM, 2015.

[SA05] M. Stephenson and S. Amarasinghe. “Predicting Unroll Factors Using

Supervised Classification”. In: International Symposium on Code Gen-

eration and Optimization (CGO). IEEE, 2005.

[SD16] T. Sorensen and A. Donaldson. “Exposing Errors Related to Weak Mem-

ory in GPU Applications”. In: ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI). ACM, 2016.

[SD17] M. Steuwer and C. Dubach. “Lift: A Functional Data-Parallel IR for

High-Performance GPU Code Generation”. In: International Symposium

on Code Generation and Optimization (CGO). IEEE, 2017.

[She+18] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana. “NEUZZ: Ef-

ficient Fuzzing with Neural Program Learning”. In: arXiv:1807.05620

(2018).

162 BIBLIOGRAPHY

[Shi+15] X. Shi, J. Liang, S. Di, B. He, H. Jin, L. Lu, Z. Wang, X. Luo, and J.

Zhong. “Optimization of Asynchronous Graph Processing on GPU with

Hybrid Coloring Model”. In: ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP). 2015.

[Si+18] X. Si, H. Dai, M. Raghothaman, M. Naik, and L. Song. “Learning Loop

Invariants for Program Verification”. In: Conference on Neural Informa-

tion Processing Systems (NeurIPS). 2018.

[Sim+12] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. “A Performance Analysis

Framework for Identifying Potential Benefits in GPGPU Applications”.

In: ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP). ACM, 2012.

[SJL11] S. Seo, G. Jo, and J. Lee. “Performance Characterization of the NAS Par-

allel Benchmarks in OpenCL”. In: International Symposium on Work-

load Characterization (IISWC). IEEE, 2011.

[SLS16] C. Sun, V. Le, and Z. Su. “Finding Compiler Bugs via Live Code Muta-

tion”. In: Object-oriented Programming Systems, Languages and Appli-

cations (OOPSLA). 2016.

[SMR03] M. Stephenson, M. Martin, and U. O. Reilly. “Meta Optimization: Im-

proving Compiler Heuristics with Machine Learning”. In: ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion (PLDI). ACM, 2003.

[SS91] H. T. Siegelmann and E. D. Sontag. “Turing Computability with Neural

Networks”. In: Applied Mathematics Letters 4.6 (1991).

[SSN12] M. Sundermeyer, R. Schl, and H. Ney. “LSTM Neural Networks for

Language Modeling”. In: Annual Conference of the International Speech

Communication Association (Interspeech). 2012.

[Str+12] J. A. Stratton, C. Rodrigues, I. Sung, N. Obeid, L. Chang, N. Anssari,

G. D. Liu, and W. W. Hwu. “Parboil: A Revised Benchmark Suite for

Scientific and Commercial Throughput Computing”. In: Center for Re-

liable and High-Performance Computing (2012).

[SVL14] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to Sequence Learning

with Neural Networks”. In: Conference on Neural Information Process-

ing Systems (NIPS). 2014.

BIBLIOGRAPHY 163

[TA03] S. Triantafyllis and D. I. August. “Compiler Optimization-Space Explo-

ration”. In: International Symposium on Code Generation and Optimiza-

tion (CGO). IEEE, 2003.

[TC13] M. Tartara and S. Crespi Reghizzi. “Continuous Learning of Compiler

Heuristics”. In: ACM Transactions on Architecture and Code Optimiza-

tion (TACO) 9.4 (2013).

[Tin+17] P. Ting, C. Tu, P. Chen, Y. Lo, and S. Cheng. “FEAST: An Automated

Feature Selection Framework for Compilation Tasks”. In: International

Conference on Advanced Information Networking and Applications (AINA).

2017.

[TPG18] L. D. Toffola, M. Pradel, and T. R. Gross. “Synthesizing Programs That

Expose Performance Bottlenecks”. In: International Symposium on Code

Generation and Optimization (CGO). IEEE, 2018.

[Tuf+19] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk.

“On Learning Meaningful Code Changes via Neural Machine Trans-

lation”. In: International Conference on Software Engineering (ICSE).

2019.

[TV16] P. Terence and J. Vinju. “Towards a Universal Code Formatter through

Machine Learning”. In: ACM SIGPLAN International Conference on

Software Language Engineering (SLE). 2016.

[Vas+19] M. Vasic, A. Kanade, P. Maniatis, D. Bieber, and R. Singh. “Neural Pro-

gram Repair by Jointly Learning to Localize and Repair”. In: Interna-

tional Conference on Learning Representations (ICLR). 2019.

[VFS15] B. Vasilescu, V. Filkov, and A. Serebrenik. “Perceptions of Diversity on

GitHub: A User Survey”. In: International Workshop on Cooperative

and Human Aspects of Software Engineering (CHASE). 2015.

[Vin+15] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. “Show and Tell: A

Neural Image Caption Generator”. In: Conference on Computer Vision

and Pattern Recognition (CVPR). IEEE, 2015.

[Wan+14] Z. Wang, G. Tournavitis, B. Franke, and M. O’Boyle. “Integrating Profile-

driven Parallelism Detection and Machine-learning-based Mapping”. In:

ACM Transactions on Architecture and Code Optimization (TACO) (2014).

164 BIBLIOGRAPHY

[Wan+17] J. Wang, B. Chen, L. Wei, and Y. Liu. “Skyfire: Data-Driven Seed Gen-

eration for Fuzzing”. In: Symposium on Security and Privacy (SP). 2017.

[Wei+11] B. Weinberger, C. Silverstein, G. Eitzmann, M. Mentovai, and T. Lan-

dray. Google C++ Style Guide. 2011.

[Wei+18] J. Wei, J. Chen, Y. Feng, K. Ferles, and Isil Dillig. “Singularity: Pattern

Fuzzing for Worst Case Complexity”. In: ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE). ACM, 2018.

[Wer90] P. J. Werbos. “Backpropagation Through Time: What It Does and How

to Do It”. In: Proceedings of the IEEE 78.10 (1990).

[Whi+15] M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk. “To-

ward Deep Learning Software Repositories”. In: Working Conference on

Mining Software Repositories (MSR). 2015.

[Whi+19] M. White, M. Tufano, M. Martı́nez, M. Monperrus, and D. Poshyvanyk.

“Sorting and Transforming Program Repair Ingredients via Deep Learn-

ing Code Similarities”. In: International Conference on Software Analy-

sis, Evolution and Reengineering (SANER). 2019.

[WLT16] S. Wang, T. Liu, and L. Tan. “Automatically Learning Semantic Fea-

tures for Defect Prediction”. In: International Conference on Software

Engineering (ICSE). ACM, 2016.

[WO09] Z. Wang and M. O’Boyle. “Mapping Parallelism to Multi-cores: A Ma-

chine Learning Based Approach”. In: ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP). 15. ACM,

2009.

[WO10] Z. Wang and M. O’Boyle. “Partitioning Streaming Parallelism for Multi-

cores: A Machine Learning Based Approach”. In: International Con-

ference on Parallel Architectures and Compilation Techniques (PACT).

ACM, 2010.

[WO18] Z. Wang and M. O’Boyle. “Machine learning in Compiler Optimiza-

tion”. In: Proceedings of the IEEE 106.23 (2018).

[WRX17] H. Wang, B. Raj, and E. P. Xing. “On the Origin of Deep Learning”. In:

arXiv:1702.07800 (2017).

BIBLIOGRAPHY 165

[WSS18] K. Wang, R. Singh, and Z. Su. “Dynamic Neural Program Embeddings

for Program Repair”. In: International Conference on Learning Repre-

sentations (ICLR). 2018.

[Wu+14] Y. Wu, J. Kropczynski, P. C. Shih, and J. M. Carroll. “Exploring the

Ecosystem of Software Developers on GitHub and Other Platforms”. In:

ACM Conference on Computer Supported Cooperative Work & Social

Computing (CSCW). 2014.

[WWO14] Y. Wen, Z. Wang, and M. O’Boyle. “Smart Multi-Task Scheduling for

OpenCL Programs on CPU/GPU Heterogeneous Platforms”. In: Inter-

national Conference on High Performance Computing (HiPC). IEEE,

2014.

[WYT13] E. Wong, J. Yang, and L. Tan. “AutoComment: Mining Question and An-

swer Sites for Automatic Comment Generation”. In: IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE). IEEE,

2013.

[Xio+13] W. Xiong, Z. Yu, Z. Bei, J. Zhao, F. Zhang, Y. Zou, X. Bai, Y. Li, and

C. Xu. “A Characterization of Big Data Benchmarks”. In: International

Conference on Big Data. IEEE, 2013.

[Xio+16] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D.

Yu, and G. Zweig. “Achieving Human Parity in Conversational Speech

Recognition”. In: arXiv:1610.05256 (2016).

[Yan+11] X. Yang, Y. Chen, E. Eide, and J. Regehr. “Finding and Understanding

Bugs in C Compilers”. In: ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). ACM, 2011.

[Yar17] D. Yarotsky. “Error Bounds for Approximations with Deep ReLU Net-

works”. In: Neural Networks 94 (2017).

[Yin+18] P. Yin, G. Neubig, M. Allamanis, M. Brockschmidt, and A. L. Gaunt.

“Learning to Represent Edits”. In: arXiv:1810.13337 (2018).

[Yos+14] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. “How Transferable are

Features in Deep Neural Networks?” In: Conference on Neural Informa-

tion Processing Systems (NIPS). 2014.

[YS18] Z. Yin and Y. Shen. “On the Dimensionality of Word Embedding”. In:

Conference on Neural Information Processing Systems (NeurIPS). 2018.

166 BIBLIOGRAPHY

[Zal14] M. Zalewski. American Fuzzy Lop. 2014.

[ZF14] M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolu-

tional Networks”. In: European Conference on Computer Vision (ECCV).

2014.

[Zha+18] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amaras-

inghe. “GraphIt - A High-Performance DSL for Graph Analytics”. In:

arXiv:1805.00923 (2018).

[ZIE16] R. Zhang, P. Isola, and A. A. Efros. “Colorful Image Colorization”. In:

European Conference on Computer Vision (ECCV). 2016.

[ZSS17] Q. Zhang, C. Sun, and Z. Su. “Skeletal Program Enumeration for Rigor-

ous Compiler Testing”. In: ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI). ACM, 2017.

	Introduction
	Machine Learning for Compilers
	Challenges in Machine Learning for Compilers
	Scarcity of Data
	Model and Feature Design
	Adoption of Machine Learning Practices

	Contributions
	Publications
	Structure
	Summary

	Background
	Introduction
	Machine Learning
	Feed-forward Neural Networks
	Recurrent Neural Networks
	Decision Trees

	Model Evaluation Techniques
	ZeroR
	Training, Validation, Test Data
	K-Fold Cross-validation
	Principal Component Analysis

	Summary

	Related Work
	Introduction
	Program Generation
	Benchmark Generation for Performance Characterisation
	Test Case Generation for Compiler Validation

	Program Optimisation
	Iterative Compilation and Auto-tuning
	Machine Learning for Compiler Optimisations

	Deep Learning over Programs
	Summary

	Improving the Performance of Predictive Models for Compiler Heuristics
	Introduction
	The Case for Generating Benchmarks
	CLgen: A System for Generating OpenCL Benchmarks
	Overview
	An OpenCL Language Corpus
	Learning OpenCL
	Synthesising Source Code

	CLdrive: A System for Driving Arbitrary OpenCL Kernels
	Generating Data Payloads
	Dynamic Checker

	Qualitative Evaluation of Generated Programs
	Methodology
	Experimental Results

	Experimental Methodology
	Experimental Setup
	Methodology

	Experimental Results
	Performance Evaluation
	Extending the Predictive Model
	Comparison of Source Features

	Summary

	Lowering the Cost of Compiler Validation
	Introduction
	DeepSmith: Compiler Fuzzing Through Deep Learning
	Generative Model
	Test Harness
	Voting Heuristics for Differential Testing

	Experimental Setup
	OpenCL Systems
	Testbeds
	Test Cases
	Bug Search Time Allowance

	Evaluation
	Compile-time Defects
	Runtime Defects
	Comparison to State-of-the-art
	Compiler Stability Over Time
	Extensibility of Language Model

	Summary

	Simplifying the Construction of Optimisation Heuristics
	Introduction
	DeepTune: Learning On Raw Program Code
	Overview
	Language Model
	Auxiliary Inputs
	Heuristic Model
	Training the Network

	Case Study A: OpenCL Heterogeneous Mapping
	State-of-the-art
	Experimental Setup
	Experimental Results

	Case Study B: OpenCL Thread Coarsening Factor
	State-of-the-art
	Experimental Setup
	Comparison to Case Study A
	Experimental Results

	Transfer Learning Across Problem Domains
	DeepTune Internal Activation States
	Summary

	Conclusions
	Contributions
	A Solution for Benchmark Scarcity
	Low-cost and Effective Compiler Fuzzing
	Automatic Compiler Optimisation Tuning

	Critical Analysis
	Generative Models for Source Code
	Rejection Sampling for Program Generation
	Characterisation of OpenCL Compiler Bugs
	Driving arbitrary OpenCL kernels
	Modelling Program Semantics from Syntactic Sequences

	Future Work
	Guided Program Synthesis to Minimise Benchmarking Cost
	Neural Model Selection through Adversarial Games
	Learning Representations for Dynamic Program Inputs
	Towards General-Purpose Program Comprehension

	Summary

	Bibliography

