
Deep Learning for Compilers

First Year Review Document
by

Chris Cummins

Supervisors:
Hugh Leather, Pavlos Petoumenos, Richard Mayr

June 4, 2017
Institute for Computing Systems Architecture,

School of Informatics,
University of Edinburgh

Abstract
Continued advancements in machine learning have increasingly ex-

tended the state-of-the art in language modelling for natural language
processing. Coupled with the increasing popularity of websites such as
GitHub for hosting software projects, this raises the potential for large
scale language modelling over open source code to build probabilistic mod-
els which capture both the semantics of a programming language and its
common usage in real world applications. This document describes my
work towards the development of systems for automatically generating
programs in a given programming language. The aim of this work is im-
provements to predictive modelling for compiler optimisation and compiler
testing. In my first year I have applied LSTMs to large corpuses of code
mined from open source in order to generate executable OpenCL kernels.
These generated programs have been shown to improve the performance
of state-of-the-art predictive models; though the programs are typically
short and limited to operating only on scalars and vectors of numerical
values. This document describes the plans for future work to extend this
initial proof-of-concept through the use of formal grammars to generate
programs in arbitrary languages, capable of satisfying arbitrary properties
of interest. This will enable the automatic generation of programs in any
language for a which a large corpus of real world codes is available, with a
range of applications including exploration of unknown parts of program
feature spaces, and identifying bugs in compilers.

Contents
1 Introduction 3

1.1 Project aim . 3
1.2 Project objectives . 3

2 Literature survey 4
2.1 Deep learning . 4
2.2 Iterative compilation . 5
2.3 Program generation . 11

3 Summary of progress 11
3.1 Research outputs . 12
3.2 Codeplay internship . 13

4 Proposal 14
4.1 Thesis outline . 14
4.2 Work plan . 15

5 Conclusion 16

Appendix A ADAPT Publication 24

Appendix B HLPGPU Publication 32

Appendix C CGO Publication 42

2

1 Introduction
1.1 Project aim
The aim of this project is the development of novel deep learning methods for
the automatic generation of programs, with applications for improving predic-
tive modelling and testing methods for compilers. The automatic generation of
programs benefits predictive modelling if the generated programs enumerate a
given program feature space, providing useful benchmarks for learning optimi-
sation heuristics. In compiler testing, the automatic generation of programs is
beneficial if there are programs produced whose computed results differ between
compiler implementations.

Current approaches to program generation are limited to random instan-
tiation of code templates and datasets, or inflexible formal grammar methods.
These methods typically produce programs which are markedly unlike real hand-
written programs. This limits their utility for predictive modelling and compiler
testing — programs which do not resemble hand-written code may expose bugs
in compilers which are not considered a priority to address; and, given their un-
usual nature, may fail to enumerate the parts of program feature spaces which
are relevant to real human workloads.

The aim of my work is to develop a new approach to program generation, in
which a stream of program fragments taken from open source code are analysed
at large scale and used to build probabilistic language models from which new
programs can be sampled. In modelling real hand written codes, these gener-
ated programs will be indistinguishable from human workloads, and will allow
enumeration of the relevant part of program feature spaces, as well as identifying
bugs in compilers which arise from common usage of a programming language.

1.2 Project objectives
1. A system for automatic program generation through deep learning. At its

simplest, such a system would consist of a method for generating program
code, and a tool for checking whether a given program is syntactically and
semantically correct and executable. The foundation for developing this
system is the application of language modelling to large corpuses of open
source code, with the intent of learning not just the syntax and semantics
of a particular programming language, but also the patterns and traits
of programs which are most representative of real human workloads. The
goal of this objective is the automatic generation of human-like workloads.

2. A technique for the generation of programs which match a given property of
interest. Properties of interest could include: having static code features
within a given range; computing different outputs when compiled using
different compilers; or exceeding a minimum threshold of runtime on a
particular architecture. This extension to the previous objective will allow
for a directed exploration of a program feature space.

3

3. An agent-based approach for per-program selection and ordering of com-
piler optimisation passes using reinforcement learning. Both compiler op-
timisation pass selection and phase ordering are critical to the effectiveness
of optimising compilers, and are difficult problems to tackle. Fixed phase
orderings fail to exploit the available performance on a per-program ba-
sis, and the optimisation spaces are large and high dimensional, rendering
exhaustive search infeasible. As a demonstration of the effectiveness of au-
tomatic program generation, the fixed phase ordering of a compiler may
be replaced with an agent which would enable online tuning of the opti-
misation pipeline, using automatically generated programs to explore the
high dimensional optimisation space.

4. Dissemination of results in one or more top-tier conference or journal.
Each of the previously described objectives corresponds to one or more
potential publications. Relevant conferences and journals to target for
publication include: CGO, FSE, HiPC, ICPP, IJPP, LCTES, OOPSLA,
PACT, PLDI, PPoPP, and TACO.

2 Literature survey
2.1 Deep learning
Deep learning is a nascent branch of machine learning in which deep or multi-
level graphs of processing layers are used to detect patterns in natural data [Bud15;
LBH15]. It is proving especially successful for its ability to ability to process
natural data in its raw form. This overcomes the traditionally laborious and
time-consuming practise of engineering feature extractors to process raw data
into an internal representation or feature vector. Deep learning has success-
fully discovered structures in high-dimensional data, and is responsible for many
breakthrough achievements in machine learning, including human parity in con-
versational speech recognition [Xio+16]; professional level performance in video
games [Mni+15]; and autonomous vehicle control [LCW12].

In past work I used the Long Short-Term Memory (LSTM) architecture
of Recurrent Neural Network (RNN) [Mik10; SSN12] to generate sequences of
OpenCL code (Appendix C). The LSTM network architecture comprises recur-
rent layers of memory cells, each consisting of an input, output, and forget gate,
and an output layer providing normalized probability values from a 1-of-K coded
vocabulary [Gra13; GS18]. Although this is the first application of deep learn-
ing for generating executable programs, RNNs have been successfully applied
to a variety of other generative tasks, including image captioning [Vin+15],
colourising black and white photographs [ZIE16], artistic style [GEB15], and
image generation [Gre+15].

The proficiency of LSTMs for sequence modeling is demonstrated in [SVL14].
Sutskever, Vinyals, and Le apply two LSTM networks to translate first a se-
quence into a fixed length vector, then to decode the vector into an output
sequence. This architecture achieves state-of-the-art performance in machine

4

translation. The authors find that reversing the order of the input sequences
markedly improves translation performance by introducing new short term de-
pendencies between input and output sequences. Such sequence transformations
should be considered for the purpose of program generation.

The application of language modeling for generating executable programs is
novel. In training on large corpuses of hand-written code, the language model
learns the human biases which are present in common codes [CBN16]. While
such human-induced basiases can prove controverial in social domains [Bol+16;
JWC17], this enables the generation of programs which, unlike other approaches
to program generation, are representative of real workloads.

Neural networks are computationally expensive, though their implementa-
tions can be generic and parallelised. Library implementations are available in
Torch [CKF11], Caffe [Jia+14], and TensorFlow [Aba+16]. The increasing size
and depth of computation graphs in deep learning has challenged the ability
to compute results in reasonable time. Possible methods for reducing com-
putational overhead involve fusing operations across layers in the graph using
domain specific languages [Ash+15; Pot+15; Tru+16]; decoupling interfaces be-
tween layers using small networks to synthesise learning gradients during train-
ing [Jad+16]; and specialising hardware for computing data parallel workloads
using FPGAs and ASICs [MS10].

Software engineering Machine learning has been applied to source code to
aid software engineering. Naturalize employs techniques developed in the natu-
ral language processing domain to model coding conventions [All+14]. JSNice
leverages probabilistic graphical models to predict program properties such as
identifier names for Javascript [RVK15]. Gu, Zhang, Zhang, and Kim use deep
learning to generate example code for APIs as responses to natural language
queries [Gu+16]. Allamanis, Peng, and Sutton use attentional neural networks
to generate summaries of source code [APS16]. Wong, Yang, and Tan mines
Q&A site StackOverflow to automatically generate code comments [WYT13].
Raychev, Vechev, and Yahav use statistical models to provide contextual code
completion [RVY14].

There is an increasing interest in mining source code repositories at large
scale [AS13; Kal+09; Whi+15]. Previous studies have involved data mining
of GitHub to analyze software engineering practices [Bai+14; GAL14; VFS15;
Wu+14]; however, no work so far has exploited mined source code for program
generation.

2.2 Iterative compilation
Iterative compilation is the method of performance tuning in which a program
is compiled and profiled using multiple different configurations of optimisations
in order to find the configuration which maximises performance. One of the
the first formalised publications of the technique appeared in 1998 by Bodin,
Kisuki, Knijnenburg, O’Boyle, and Rohou [Bod+98]. Iterative compilation has

5

since been demonstrated to be a highly effective form of empirical performance
tuning for selecting compiler optimisations.

An enumeration of the optimisation space of Intel Thread Building Blocks
in [CM08] shows that runtime knowledge of the available parallel hardware can
have a significant impact on program performance. Collins, Fensch, and Leather
exploit this in [CFL12], first using Principle Components Analysis to reduce the
dimensionality of the optimisation space, followed by a search of parameter
values to improve program performance by a factor of 1.6× over values chosen
by a human expert. In [Col+13], they extend this using static feature extraction
and nearest neighbour classification to further prune the search space, achieving
an average 89% of the oracle performance after evaluating 45 parameters.

Frameworks for iterative compilation offer mechanisms for abstracting the
iterative compilation process from the optimisation space. OpenTuner presents
a generic framework for optimisation space exploration [Ans+13]. CLTune is
a generic autotuner for OpenCL kernels [NC15]. Both frameworks implement
search, however, the huge number of possible compiler optimisations makes
such a search expensive to perform for every new configuration of program,
architecture and dataset.

Machine learning Machine learning has been used to guide iterative compi-
lation and predict optimisations for code. Stephenson, Martin, and Reilly use
“meta optimisation” to tune compiler heuristics through an evolutionary algo-
rithm to automate the search of the optimisation space [SMR03]. Fursin, Kash-
nikov, Memon, Chamski, Temam, Namolaru, Yom-Tov, Mendelson, Zaks, Cour-
tois, Bodin, Barnard, Ashton, Bonilla, Thomson, Williams, and O’Boyle con-
tinued this with Milepost GCC, the first machine learning-enabled self-tuning
compiler [Fur+11]. A survey of machine learning heuristics quality concludes
that the automatic generation of self-tuning heuristics is an ongoing research
challenge that offers the greatest generalisation benefits [Bur+13].

Dastgeer, Enmyren, and Kessler developed a machine learning based auto-
tuner for the SkePU skeleton library in [DEK11]. Training data is used to predict
the optimal execution device (i.e. CPU, GPU) for a given program by predicting
execution time and memory copy overhead based on problem size. The auto-
tuner only supports vector operations, and there is limited cross-architecture
evaluation. In [DK15], the authors extend SkePU to improve the data consis-
tency and transfer overhead of container types, reporting up to a 33.4× speedup
over the previous implementation.

Ogilvie, Petoumenos, Wang, and Leather use active learning to reduce the
cost of iterative compilation by searching for points in the optimisation space
which are close to decision boundaries [Ogi+15]. This reduces the cost of train-
ing compared to a random search. Wahib and Maruyama use machine learning
to automate the selection of GPU kernel transformations [WM15].

PetaBricks is a language and compiler for algorithmic choice [Ans+09]. Users
provide multiple implementations of algorithms, optimised for different param-
eters or use cases. This creates a search space of possible execution paths for a

6

given program. This has been combined with autotuning techniques for enabling
optimised multigrid programs [Cha+09], with the wider ambition that these au-
totuning techniques may be applied to all algorithmic choice programs [Ans14].
While this helps produce efficient programs, it places a great burden on the de-
veloper, requiring them to provide enough contrasting implementations to make
a search of the optimisation space fruitful.

In [Fur+14; FT10; MF13], Fursin, Miceli, Lokhmotov, Gerndt, Baboulin,
Malony, Chamski, Novillo, and Del Vento advocate a “big data” driven ap-
proach to autotuning, arguing that the challenges facing widespread adoption
of autotuning and machine learning methodologies can be attributed to: a lack
of common, diverse benchmarks and datasets; a lack of common experimen-
tal methodology; problems with continuously changing hardware and software
stacks; and the difficulty to validate techniques due to a lack of sharing in pub-
lications. They propose a system for addressing these concerns, the Collective
Mind knowledge system, which provides a modular infrastructure for sharing
autotuning performance data and related artifacts across the internet.

Dynamic optimisers Iterative compilation typically involves searching the
optimisation space offline — dynamic optimisers perform this optimisation space
exploration at runtime, allowing optimisations tailored to dynamic feature val-
ues. This is a challenging task, as a random search of an optimisation space
may result in many configurations with suboptimal performance. In a real world
system, evaluating many suboptimal configurations will cause significant slow-
downs to a program. A resulting requirement of dynamic optimisers is that
convergence time towards optimal parameters is minimised.

Existing dynamic optimisation research has typically taken a low level ap-
proach to performing optimisations. Dynamo is a dynamic optimiser which
performs binary level transformations of programs using information gathered
from runtime profiling and tracing [BDB00]. While this provides the ability to
respond to dynamic features, it restricts the range of optimisations that can
be applied to binary transformations. These low level transformations cannot
match the performance gains that higher level parameter tuning produces.

Superoptimisers In [Mas87], the smallest possible program which performs
a specific function is found through an iterative enumeration of the entire in-
struction set. Starting with a program of a single instruction, the superoptimiser
tests to see if any possible instruction passes a set of conformity tests. If not,
the program length is increased by a single instruction and the process repeats.
The exponential growth in the size of the search space is far too expensive for
all but the smallest of hot paths, typically less than 13 instructions. The op-
timiser is limited to register to register memory transfers, with no support for
pointers, a limitation which is addressed in [JNR02]. Denali is a superoptimiser
which uses constraint satisfaction and rewrite rules to generate programs which
are provably optimal, instead of searching for the optimal configuration through
empirical testing. Denali first translates a low level machine code into guarded

7

multi-assignment form, then uses a matching algorithm to build a graph of all
of a set of logical axioms which match parts of the graph, before using boolean
satisfiability to disprove the conjecture that a program cannot be written in n
instructions. If the conjecture cannot be disproved, the size of n is increased
and the process repeats.

GPUs Performant GPGPU programs require careful attention from the de-
veloper to properly manage data layout in DRAM, caching, diverging control
flow, and thread communication. The performance of programs depends heav-
ily on fully utilising zero-overhead thread scheduling, memory bandwidth, and
thread grouping. Ryoo, Rodrigues, Baghsorkhi, Stone, Kirk, and Hwu illus-
trate the importance of these factors by demonstrating speedups of up to 432×
for matrix multiplication in CUDA by appropriate use of tiling and loop un-
rolling [Ryo+08a]. The importance of proper exploitation of local shared mem-
ory and synchronisation costs is explored in [Lee+10].

In [CW14], data locality optimisations are automated using a description of
the hardware and a memory-placement-agnostic compiler. The authors demon-
strate speedups of up to 2.08×, although at the cost of requiring accurate mem-
ory hierarchy descriptor files for all targeted hardware. The descriptor files must
be hand generated, requiring expert knowledge of the underlying hardware in
order to properly exploit memory locality.

Data locality for nested parallel patterns is explored in [Lee+14]. The au-
thors use an automatic mapping strategy for nested parallel skeletons on GPUs,
which uses a custom intermediate representation and a CUDA code generator,
achieving 1.24× speedup over hand optimised code on 7 of 8 Rodinia bench-
marks.

Reduction of the GPGPU optimisation space is demonstrated in [Ryo+08b],
using the common subset of optimal configurations across a set of training ex-
amples. This technique reduces the search space by 98%, although it does not
guarantee that for a new program, the reduced search space will include the
optimal configuration.

Magni, Dubach, and O’Boyle demonstrated that thread coarsening of OpenCL
kernels can lead to speedups in program performance between 1.11× and 1.33×
in [MDO14]. The authors achieve this using a machine learning model to pre-
dict optimal thread coarsening factors based on the static features of kernels,
and an LLVM function pass to perform the required code transformations.

A framework for the automatic generation of OpenCL kernels from high-level
programming concepts is described in [SFD15]. A set of rewrite rules is used to
transform high-level expressions to OpenCL code, creating a space of possible
implementations. This approach is ideologically similar to that of PetaBricks,
in that optimisations are made through algorithmic choice, although in this
case the transformations are performed automatically at the compiler level.
The authors report performance on a par with that of hand written OpenCL
kernels.

8

Stencils Stencil codes have a variety of computationally expensive uses from
fluid dynamics to quantum mechanics. Efficient, tuned stencil kernels are highly
sought after, with early work in 2003 by Bolz, Farmer, Grinspun, and Schroder
demonstrating the capability of GPUs for massively parallel stencil operations [Bol+03].
In the resulting years, stencil codes have received much attention from the per-
formance tuning research community.

Ganapathi, Datta, Fox, and Patterson demonstrated early attempts at auto-
tuning multicore stencil codes in [Gan+09], drawing upon the successes of sta-
tistical machine learning techniques in the compiler community. They present
an autotuner which can achieve performance up to 18% better than that of a
human expert. From a space of 10 million configurations, they evaluate the
performance of a randomly selected 1500 combinations, using Kernel Canonical
Correlation Analysis to build correlations between tunable parameter values and
measured performance targets. Performance targets are L1 cache misses, TLB
misses, cycles per thread, and power consumption. The use of KCAA restricts
the scalability of their system as the complexity of model building grows expo-
nentially with the number of features. In their evaluation, the system requires
two hours of compute time to build the KCAA model for only 400 seconds of
benchmark data. They present a compelling argument for the use of energy ef-
ficiency as an optimisation target in addition to runtime, citing that it was the
power wall that lead to the multicore revolution in the first place. Their choice
of only 2 benchmarks and 2 platforms makes the evaluation of their autotuner
somewhat limited.

Berkeley, Datta, Murphy, Volkov, Williams, and Carter targeted 3D sten-
cils code performance in [Ber+08]. Stencils are decomposed into core blocks,
sufficiently small to avoid last level cache capacity misses. These are then fur-
ther decomposed to thread blocks, designed to exploit common locality threads
may have within a shared cache or local memory. Thread blocks are divided
into register blocks to take advantage of data level parallelism provided by the
available registers. Data allocation is optimised on NUMA systems. The perfor-
mance evaluation considers speedups of various optimisations with and without
consideration for host/device transfer overhead.

Kamil, Chan, Oliker, Shall, and Williams present an autotuning framework
in [Kam+10] which accepts as input a Fortran 95 stencil expression and gen-
erates tuned shared-memory parallel implementations in Fortan, C, or CUDA.
The system uses an IR to explore autotuning transformations, enumerating a
subset of the optimisation space and recording only a single execution time for
each configuration, reporting the fastest. They demonstrate their system on 4
architectures using 3 benchmarks, with speedups of up to 22× compared to se-
rial implementations. The CUDA code generator does not optimise for the GPU
memory hierarchy, using only global memory. As demonstrated in this thesis,
improper utilisation of local memory can hinder program performance by two
orders of magnitude. There is no directed search or cross-program learning.

In [ZM12], Zhang and Mueller present a code generator and autotuner for 3D
Jacobi stencil codes. Using a DSL to express kernel functions, the code generator
performs substitution from one of two CUDA templates to create programs for

9

execution on GPUs. GPU programs are parameterised and tuned for block
size, block dimensions, and whether input data is stored in read only texture
memory. This creates an optimisation space of up to 200 configurations. In an
evaluation of 4 benchmarks, the authors report performance that is comparable
with previous implementations of iterative Jacobi stencils on GPUs [HPS12;
PF10]. The dominating parameter is shown to be block dimensions, followed by
block size, then read only memory. The DSL presented in the paper is limited
to expressing only Jacobi Stencils applications. Their autotuner requires a full
enumeration of the parameter space for each program, which may be impractical
for the needs of general purpose stencil computing. Previous work (Appendix A)
overcomes this drawback by learning parameter values which transfer to unseen
stencils, without the need for an expensive tuning phase for each program and
architecture.

In [CSB11], Christen, Schenk, and Burkhart presents a DSL for expressing
stencil codes, a C code generator, and an autotuner for exploring the optimisa-
tion space of blocking and vectorisation strategies. The DSL supports stencil
operations on arbitrarily high-dimensional grids. The autotuner performs either
an exhaustive, multi-run Powell search, Nelder Mead, or evolutionary search
to find optimal parameter values. They evaluate their system on two CPUS
and one GPU using 6 benchmarks. The authors do not present a ratio of the
available performance that their system achieves, or how the performance of
optimisations vary across benchmarks or devices.

A stencil grid can be decomposed into smaller subsections so that multi-
ple GPUs can operate on each subsection independently. This requires a small
overlapping region where each subsection meets — the halo region — to be
shared between devices. For iterative stencils, values in the halo region must
be synchronised between devices after each iteration, leading to costly commu-
nication overheads. One possible optimisation is to deliberately increase the
size of the halo region, allowing each device to compute updated values for the
halo region, instead of requiring a synchronisation of shared state. This re-
duces the communication costs between GPUs, at the expense of introducing
redundant computation. Tuning the size of this halo region is the goal of PAR-
TANS [LFC13], an autotuning framework for multi-GPU stencil computations.
Lutz, Fensch, and Cole explore the effect of varying the size of the halo regions
using six benchmark applications, finding that the optimal halo size depends
on the size of the grid, the number of partitions, and the connection mecha-
nism (i.e. PCI express). The authors present an autotuner which determines
problem decomposition and swapping strategy offline, and performs an online
search for the optimal halo size. The selection of overlapping halo region size
compliments the selection of workgroup size which is the subject of previous
work (Appendix A).

In applications of machine learning for iterative compilation, a limiting fac-
tor of the effectiveness of learned models is the number of benchamrks used.
The development of automatic program generation alleviates this problem by
allowing an unbounded number of programs to enumerate the feature space at
an increasingly granular scale.

10

2.3 Program generation
GENESIS [CGA15] is a language for generating synthetic training programs.
The essence of the approach is to construct a probabilistic grammar with em-
bedded semantic actions that defines a language of possible programs. New
programs may be created by sampling the grammar and, through setting prob-
abilities on the grammar productions, the sampling is biased towards producing
programs from one part of the space or another. This technique is potentially
completely general, since a grammar can theoretically be constructed to match
any desired program domain. However, despite being theoretically possible, it
is not easy to construct grammars which are both suitably general and also pro-
duce programs that are in any way similar to human written programs. It has
been shown to be successful over a highly restricted space of stencil benchmarks
with little control flow or program variability [FE15; GA15] (Appendix A). But,
it is not clear how much effort it will take, or even if it is possible for human
experts to define grammars capable of producing human like programs in more
complex domains. By contrast, learning from a corpus provides general-purpose
program generation over unknown domains, in which the statistical distribution
of generated programs is automatically inferred from real world code.

Random program generation is an effective method for software testing.
Grammar-based fuzz testers have been developed for C [Yan+11] and OpenCL [Lid+15].
Programs generated by grammar-based approaches are often unlike real hand-
written code, and are typically very large. As such, once a bug has been identi-
fied, test case reduction [Reg+12] is required to minimise the size of the program
and isolate the code of interest. A mutation-based approach for differential test-
ing the Java Virtual Machine is demonstrated in [Che+16].

Goal-directed program generators have been used for a variety of domains,
including generating linear transforms [VDP09], MapReduce programs [Smi16],
and data structure implementations [LEE16].

3 Summary of progress
Progress in my first year has been focused on developing the initial proof-of-
concept of this novel approach to program generation, and in extending and
publishing previous work on predictive modeling for optimising GPU stencil
computations.

11

3.1 Research outputs
Publications

1. Cummins, C, Petoumenos, P, Steuwer, M & Leather, H, “Autotuning
OpenCL Workgroup Size for Stencil Patterns”. In International Workshop
on Adaptive Self-tuning Computing Systems (ADAPT). HiPEAC, Prague,
Czech Republic, 18 January 2016 [Appendix A];

2. Cummins, C, Petoumenos, P, Steuwer, M & Leather, H , “Towards Col-
laborative Performance Tuning of Algorithmic Skeletons”. In Workshop
on High-Level Programming for Heterogeneous & Hierarchical Parallel
Systems (HLPGPU). HiPEAC, Prague, Czech Republic, 19 January 2016
[Appendix B];

3. Cummins, C, Petoumenos, P, Wang, Z & Leather, H, “Synthesizing Bench-
marks for Predictive Modeling”. To appear in International Symposium
on Code Generation and Optimization (CGO). Austin, TX, USA, 4–8
February 2017 [Appendix C].

Posters
1. Cummins, C, Petoumenous, P, Steuwer, M, Leather, H, “Humans Need

Not Apply”, Google PhD Student Summit on Compiler & Programming
Technology, Munich, Germany, 7–9 December 2015;

2. Cummins, C, Petoumenos, P, Steuwer, M & Leather, H, “Autotuning
OpenCLWorkgroup Sizes”, HiPEAC, Prague, Czech Republic, 18–20 Jan-
uary 2016.

3. Cummins, C, Petoumenos, P, Steuwer, M & Leather, H, “Autotuning
OpenCL Workgroup Sizes”, 37th ACM SIGPLAN conference on Pro-
gramming Language Design & Implementation (PLDI), Santa Barbara,
California, 13–17 June 2016.

4. Cummins, C, Petoumenos, P, Steuwer, M & Leather, H, “Autotuning
OpenCL Workgroup Sizes”, 12th International Summer School on Ad-
vanced Computer Architecture and Compilation for High-Performance
and Embedded Systems (ACACES), Fiuggi, Italy, 10–16 July 2016.

Talks
1. Cummins, C, “All the OpenCL on GitHub: Teaching an AI to code, one

character at a time”. Amazon Development Centre, Edinburgh, UK, 19
May 2016;

2. Cummins, C, “Building an AI that Codes”, Ocado Technology, Hatfield,
UK, 22 July 2016;

3. Cummins, C, “Machine Learning & Compilers”, Codeplay Software, Ed-
inburgh, UK, 9 September 2016.

12

3.2 Codeplay internship
From April through September I interned at Codeplay Software in Edinburgh.
My role within Codeplay was as a member of the SYCL demos team, in which
I contributed to SYCL support for TensorFlow and Eigen; developed a Python
frontend for the C++ template library VisionCpp; and developed a toolset of
metaprogramming utilities for SYCL.

Eigen1 is a C++ template library which provides linear math operations
on n-dimensional tensors. It is a key dependency of TensorFlow ??, a popular
library for distributed and parallelised machine learning. During my internship
I imlpemented GPU memory management for tensors using SYCL, and support
for broadcast operations.

SYCL is a single-source specification for heterogeneous parallelism in C++ [Khr15].
Codeplay is developing a compiler for this standard, ComputeCpp. Compiling
a SYCL application with ComputeCpp is a two pass process. In the first pass,
the device compiler produces SPIR code for execution on parallel devices. SPIR
is an intermediate language which extends LLVM bytecode for parallel compute
and graphics [Khr14]. The second compiler pass uses a host compiler and links
against the generated SPIR bytecode. At runtime, the SYCL runtime schedules
kernels for execution on parallel devices, and OpenCL platforms compile the
SPIR bytecode to executable device code.

VisionCPP [Gol16] is a C++ template library for performance-portable vi-
sion processing using SYCL. Users declare trees of VisionCpp expressions, which
at compile time may be fused into a single kernel for efficient execution on
GPUs [Pot+15]. While working at Codeplay I implemented a Python interface
for VisionCpp, which allows for simple construction of expression trees using
the python object interface. When evaluated, python expression trees are lazily
evaluated to a sequence of nodes, from which C++ code is generated. The Com-
puteCpp compiler is then invoked to generate a native binary for the expression
tree, which is linked and loaded by the python runtime and called. Inputs and
outputs are transferred between python and the native binary, allowing for a
seemless interface of high level scripting language and effecitient native GPU-
accelerated code. This is a research project with the potential for publication
in a high level GPU programming workshop.

1http://eigen.tuxfamily.org/

13

http://eigen.tuxfamily.org/

4 Proposal
4.1 Thesis outline
Chapter 1: Introduction. An introduction to the main topic, summary of
contributions, and motivating examples.

Chapter 2: Literature survey. A thorough exposition of the relevant liter-
ature in the fields of compiler research and machine learning.

Chapter 3: Language modelling for program code. Defining machine
learning systems for language modelling over corpuses of program source code.
Background and application of language modelling approaches to programming
languages. Description of source code transformations for machine learning, and
an empirical evaluation of the effects of transformations on the effectiveness of
learned LSTM models. This chapter will provide the foundational methodology
for building probabilistic models of programs in a given programming languages.

Chapter 4: Automatic program generation through deep learning.
Introducing novel techniques for generating and evaluating programs and their
inputs, as described in the first project objective. Empirical evaluations for two
use cases: compiler autotuning and differential testing. For each evaluation:
experimental setup, methodology, results, and analysis. The basis of this chap-
ter will be previous work for synthesising OpenCL kernels [Appendix C], with
extensions for a grammar-based approach to program generation.

Chapter 5: Searching the program feature space. A methodology for
performing directed searches of program feature spaces using deep learning pro-
gram synthesis, satisfying the second project objective. This may be an iterative
process of mutating code to converge on the goal features, or using a model-
based approach which guarantees program synthesis with specific features by
considering only well-formed sequences which result in the target feature val-
ues. This section will contain an empirical evaluation of convergence time and
possible coverage of feature spaces.

Chapter 6: Learning the compiler optimisation pipeline. Applying an
agent based approach to the compiler optimisation pipeline, the third project
objective. This would replace the fixed ordering of optimisation passes in present
compilers, and would use reinforcement learning combined with automatic pro-
gram generation to explore the space of pass orderings and selection. The agent
will be trained using synthesised programs, and empirically evaluated on bench-
mark suites using LLVM.

Chapter 7: Conclusions. Summary of contributions and research impact.
Future research questions and directions for extended work.

14

4.2 Work plan
Year 2 The year will begin with extensions to previous work on CLgen2:

• adding support for alternate vocabularies, to enable learning models at the
token or AST-level, as opposed to the current character-based approach;

• adding support for alternative encodings, enabling additional corpus trans-
formations, for example, by reversing the character sequence, or interleav-
ing characters from the start and end of sequences.

• implementing an iterative hill climb search of the program feature space
using mutations to model seed text and random number generator state;

The goal of these extensions is incremental improvements to my current work
on deep learning program synthesis (Appendix C), by demonstrating the abil-
ity to enumerate feature spaces, and reducing the rejection rate of synthesised
programs. The deliverable for this work would be either an extended journal
publication of Appendix C, or a new publication “Directed exploration of pro-
gram feature spaces”. This outcome would depend on the extend to which these
changes improve CLgen. At a minimum, the rejection rate would be measurably
decreased so that programs can be generated a faster rate, and an iterative pro-
cess of sample rejection would be shown to produce programs which converge
towards specific feature values.

Upon completion of these first goals by the end of February 2017, a short
period of time will be dedicated to analysis of the language models learned
by CLgen. By modelling the syntax and semantics of source codes in a given
language, it may be possible to extract the learned grammar of the language
from the model’s intermediate layers. The ability to automatically generate
a formal grammar for a program language would have benefits for program
synthesis, allowing the development of a grammar based system which operates
on well-formed syntax trees, replacing the need for rejection tests to validate
that a synthesised program is syntactically and semantically correct.

Should this brief exploratory analysis fail at extracting formal language
grammars from learned models, then an alternative approach to reducing the
rejection rate of generated programs would be the development of a system to
iteratively and incrementally repair issues with rejected programs. This would
extend the functionality of existing systems for statically verifying correctness
of programs, allowing generated programs with small syntactic and semantic
errors to be recovered.

The latter 3 months of the year will be used to test improvements on corpus
generation. This will involve an empirical evaluation of the program rejection
rate when sampling a model trained on previously generated programs. If the
performance of the system improves under the these conditions, then it will al-
low for training language models on incrementally larger corpuses, and provide
a mechanism for a program generator which is self-improving as the number of

2http://chriscummins.cc/clgen/

15

http://chriscummins.cc/clgen/

programs it generates increases. The qualitative evaluation of synthesised pro-
grams described in Appendix C will be repeated for models trained on generated
programs.

Year 3 The first three months of my third year will be used to develop a formal
grammar based approach to automatic program synthesis. Given a corpus of
example programs in a given programming language, and a tool which verifies
or rejects a program in the given language, this approach would instantiate
the grammar probabilistically, using a language model trained on the corpus to
determine the probability of a given production rule based on its probability
distribution within the corpus.

By operating only on sequences of well-formed syntax trees, a grammar
based approach has the potential to significantly improve the rate of program
generation by pruning the space of possible output sequences to only those which
produce correct programs. This would allow more strict checks to be imposed
on generated programs, allowing focus on generating programs which are free
from undefined behaviour.

The successul development of this system will be validated in a set of ex-
periments to generate programs in three programming languages: OpenCL, C,
and Java. Generated programs will be tested on multiple compilers, and the
computed results of each compared. If the computed results differ and the pro-
grams are free from undefined behaviour, then a bug has been exposed in at
least one of the disagreeing compilers. The intended deliverable for this work is
a publication “Differential testing compilers through deep learning”.

Months 4 through 6 of year 3 will be used to develop an agent-based approach
to compiler pass selection and ordering. This will involve extensions to the
LLVM pass manager to support reinforcement learning, and use the automatic
program generator developed previously to explore the program feature space.
The implementation work for this project is minimal, with the majority of time
required for running empirical evaluations of the system on benchmark suites.
The second half of the year will be dedicated to thesis write up.

5 Conclusion
The focus of my research is on the development of systems for automatically
generating programs in a given programming language. Such systems have large
potential impact on the fields of predictive modelling for compiler optimisations
and compiler testing. In my first year I have successfully demonstrated and
published an initial proof-of-concept of a new approach to program generation
using deep learning, which generates an unbounded number of programs that
are indistinguishable from hand written code. Extending this work to generate
programs in arbitrary languages and exhibiting arbitrary properties of interest
will greatly improve the utility of this system, and enable improvements to
compiler optimisations which are not possible using existing state-of-the-art
program generators or hand written programs.

16

References
[Aba+16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M.

Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg,
R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Va-
sudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. “TensorFlow:
A system for large-scale machine learning”. In: arXiv:1605.08695
(2016).

[All+14] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. “Learning Nat-
ural Coding Conventions”. In: FSE. 2014, pages 281–293.

[APS16] M. Allamanis, H. Peng, and C. Sutton. “A Convolutional Atten-
tion Network for Extreme Summarization of Source Code”. In:
arXiv:1602.03001 (2016).

[AS13] M. Allamanis and C. Sutton. “Mining Source Code Repositories at
Massive Scale using Language Modeling”. In:MSR. 2013, pages 207–
216.

[Ans+09] A Ansel, C Chan, Y. L Wong, M Olszewski, Q Zhao, A Edelman,
and S Amarasinghe. “PetaBricks: A Language and Compiler for
Algorithmic Choice”. In: PLDI. New York, NY, USA: ACM, 2009.
url: http://doi.acm.org/10.1145/1542476.1542481.

[Ans+13] J Ansel, S Kamil, K Veeramachaneni, U. O Reilly, and S. A Ama-
rasinghe. “OpenTuner: An Extensible Framework for Program Au-
totuning”. In: PACT. ACM, 2013.

[Ans14] Jason Ansel. “Autotuning Programs with Algorithmic Choice”.
PhD thesis. Massachusetts Institute of Technology, 2014.

[Ash+15] A. Ashari, M. Boehm, B. Reinwald, and K. Campbell. “On Opti-
mizing Machine LearningWorkloads via Kernel Fusion”. In: PPoPP.
2015, pages 173–182.

[Bai+14] R. Baishakhi, D. Posnett, V. Filkov, and P. Devanbu. “A Large
Scale Study of Programming Languages and Code Quality in Github”.
In: FSE. 2014.

[BDB00] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. “Dy-
namo: A Transparent Dynamic Optimization System”. In: PLDI.
New York, NY, USA: ACM, 2000. url: http://doi.acm.org/
10.1145/349299.349303.

[Ber+08] L. Berkeley, K. Datta, M. Murphy, V. Volkov, S. Williams, and
J. Carter. “Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures”. In: SC. 2008, page 4.

[Bod+98] F. Bodin, T. Kisuki, P. M. W. Knijnenburg, M. O’Boyle, and E.
Rohou. “Iterative compilation in a non-linear optimisation space”.
In: PACT. ACM, 1998.

17

http://doi.acm.org/10.1145/1542476.1542481
http://doi.acm.org/10.1145/349299.349303
http://doi.acm.org/10.1145/349299.349303

[Bol+16] T. Bolukbasi, K. Chang, J. Zou, V. Saligrama, and A. Kalai. “Man
is to Computer Programmer as Woman is to Homemaker? Debias-
ing Word Embeddings”. In: arXiv:1607.06520 (2016).

[Bol+03] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schroder. “Sparse
matrix solvers on the GPU: conjugate gradients and multigrid”. In:
TOG 22.3 (2003), pages 917–924.

[Bud15] N. Buduma. Fundamentals of Deep Learning. O’Reilly, 2015.
[Bur+13] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E.

Özcan, and R. Qu. “Hyper-heuristics: a survey of the state of the
art”. In: JORS 64 (2013).

[CBN16] A. Caliskan-islam, J. J. Bryson, and A. Narayanan. “Semantics
derived automatically from language corpora necessarily contain
human biases”. In: arXiv:1608.07187 (2016).

[Cha+09] C Chan, H Ansel, Y. L Wong, S Amarasinghe, and A Edelman.
“Autotuning multigrid with PetaBricks”. In: SC. New York, New
York, USA: ACM Press, 2009. url: http://dl.acm.org/
citation.cfm?doid=1654059.1654065.

[CW14] Guoyang Chen and Bo Wu. “PORPLE: An Extensible Optimizer
for Portable Data Placement on GPU”. In: MICRO. IEEE, 2014,
pages 88–100.

[Che+16] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao. “Coverage-Directed
Differential Testing of JVM Implementations”. In: PLDI. 2016.

[CGA15] A. Chiu, J. Garvey, and T. S. Abdelrahman. “Genesis: A Language
for Generating Synthetic Training Programs for Machine Learn-
ing”. In: CF. ACM, 2015, page 8.

[CSB11] Matthias Christen, Olaf Schenk, and Helmar Burkhart. “PATUS: A
Code Generation and Autotuning Framework for Parallel Iterative
Stencil Computations on Modern Microarchitectures”. In: PDPS.
IEEE, May 2011, pages 676–687.

[CFL12] A. Collins, C. Fensch, and H. Leather. “Auto-Tuning Parallel Skele-
tons”. In: Parallel Processing Letters 22.02 (June 2012), page 1240005.

[Col+13] A. Collins, C. Fensch, H. Leather, and M. Cole. “MaSiF: Machine
Learning Guided Auto-tuning of Parallel Skeletons”. In: HiPC (Dec.
2013), pages 186–195.

[CKF11] R. Collobert, K. Kavukcuoglu, and C. Farabet. “Torch7: A Matlab-
like Environment for Machine Learning”. In: BigLearn. 2011.

[CM08] G. Contreras and M. Martonosi. “Characterizing and improving
the performance of Intel Threading Building Blocks”. In: IISWC.
IEEE, Oct. 2008.

[DK15] U. Dastgeer and C. Kessler. “Smart Containers and Skeleton Pro-
gramming for GPU-Based Systems”. In: IJPP (2015), pages 1–25.

18

http://dl.acm.org/citation.cfm?doid=1654059.1654065
http://dl.acm.org/citation.cfm?doid=1654059.1654065

[DEK11] Usman Dastgeer, Johan Enmyren, and ChristophWKessler. “Auto-
tuning SkePU: a multi-backend skeleton programming framework
for multi-GPU systems”. In: IWMSE. ACM, 2011, pages 25–32.

[FE15] T. L. Falch and A. C. Elster. “Machine Learning Based Auto-tuning
for Enhanced OpenCL Performance Portability”. In: IPDPSW.
IEEE, 2015.

[Fur+11] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam,
M. Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois,
F. Bodin, P. Barnard, E. Ashton, E. Bonilla, J. Thomson, C. K. I.
Williams, and M. O’Boyle. “Milepost GCC: Machine Learning En-
abled Self-tuning Compiler”. In: IJPP 39.3 (2011), pages 296–327.

[Fur+14] G. Fursin, R. Miceli, A. Lokhmotov, M. Gerndt, M. Baboulin, A. D.
Malony, Z. Chamski, D. Novillo, and D. Del Vento. “Collective
Mind: Towards practical and collaborative auto-tuning”. In: Sci-
entific Programming 22.4 (2014), pages 309–329.

[FT10] G. Fursin and O. Temam. “Collective Optimization: A Practical
Collaborative Approach”. In: TACO 7.4 (2010).

[Gan+09] A. Ganapathi, K. Datta, A. Fox, and D. Patterson. “A Case for Ma-
chine Learning to Optimize Multicore Performance”. In: HotPar.
2009.

[GA15] J. D. Garvey and T. S. Abdelrahman. “Automatic Performance
Tuning of Stencil Computations on GPUs”. In: ICPP (2015).

[GEB15] L. A. Gatys, A. S. Ecker, and M. Bethge. “A Neural Algorithm of
Artistic Style”. In: arXiv:1508.06576 (2015).

[Gol16] M. Goli. “VisionCPP: A SYCL-based Computer Vision Frame-
work”. In: IWOCL. 2016.

[Gra13] A. Graves. “Generating Sequences with Recurrent Neural Networks”.
In: arXiv:1308.0850 (2013).

[GS18] A. Graves and J. Schmidhuber. “Framewise Phoneme Classifica-
tion with Bidirectional LSTM and Other Neural Network Archi-
tectures”. In: Neural Networks 5.5 (18), pages 602–610.

[Gre+15] K. Gregor, I. Danihelka, A. Graves, D. Jimenez Rezende, and D.
Wierstra. “DRAW: A Recurrent Neural Network For Image Gen-
eration”. In: arXiv:1502.04623 (2015).

[Gu+16] X. Gu, H. Zhang, D. Zhang, and S. Kim. “Deep API Learning”.
In: arXiv:1605.08535 (2016).

[GAL14] E. Guzman, D. Azócar, and Y. Li. “Sentiment Analysis of Com-
mit Comments in GitHub: an Empirical Study”. In: MSR. 2014,
pages 352–355.

19

[HPS12] Justin Holewinski, Louis-Noël Pouchet, and P Sadayappan. “High-
performance Code Generation for Stencil Computations on GPU
Architectures”. In: SC. 2012, pages 311–320. url: http://doi.
acm.org/10.1145/2304576.2304619.

[Jad+16] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves,
and K. Kavukcuoglu. “Decoupled Neural Interfaces using Synthetic
Gradients”. In: arXiv:1608.05343 (2016).

[Jia+14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. “Caffe: Convolutional Architecture
for Fast Feature Embedding”. In: ACMMM. 2014.

[JWC17] K. Joseph, W. Wei, and K. C. Carley. “Girls rule, boys drool: Ex-
tracting semantic and affective stereotypes on Twitter”. In: CSCW.
2017.

[JNR02] Rajeev Joshi, Greg Nelson, and Keith Randall. “Denali: a goal-
directed superoptimizer”. In: PLDI. Volume 37. 5. ACM, 2002,
page 304.

[Kal+09] E. Kalliamvakou, L. Singer, G. Gousios, D. M. German, K. Blincoe,
and D. Damian. “The Promises and Perils of Mining GitHub”. In:
MSR. 2009.

[Kam+10] S. Kamil, C. Chan, L. Oliker, J. Shall, and S. Williams. “An auto-
tuning framework for parallel multicore stencil computations”. In:
IPDPS (2010).

[Khr15] Khronos OpenCL Group Inc. SYCL Specification Vesion 1.2. Tech-
nical report. 2015.

[Khr14] Khronos OpenCL Group Inc. The SPIR Specification Version 1.2.
Technical report. 2014.

[LBH15] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature
521.7553 (2015), pages 436–444.

[Lee+14] Hyoukjoong Lee, Kevin J Brown, Arvind K Sujeeth, Tiark Rompf,
and Kunle Olukotun. “Locality-Aware Mapping of Nested Parallel
Patterns on GPUs”. In: MICRO. IEEE, 2014, pages 63–74.

[Lee+10] Victor W. Lee, Per Hammarlund, Ronak Singhal, Pradeep Dubey,
Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, and
Srinivas Chennupaty. “Debunking the 100X GPU vs. CPU myth”.
In:ACM SIGARCH Computer Architecture News 38 (2010), page 451.

[Lid+15] C. Lidbury, A. Lascu, N. Chong, and A. Donaldson. “Many-Core
Compiler Fuzzing”. In: PLDI. 2015, pages 65–76.

[LEE16] C. Loncaric, T. Emina, and M. D. Ernst. “Fast Synthesis of Fast
Collections”. In: PLDI. 2016.

[LCW12] T. Lozano-Perez, I. J. Cox, and G. T. Wilfong. Autonomous Robot
Vehicles. Springer, 2012.

20

http://doi.acm.org/10.1145/2304576.2304619
http://doi.acm.org/10.1145/2304576.2304619

[LFC13] Thibaut Lutz, Christian Fensch, and Murray Cole. “PARTANS:
An Autotuning Framework for Stencil Computation on Multi-GPU
Systems”. In: TACO 9.4 (2013), page 59.

[MDO14] A. Magni, C. Dubach, and M. O’Boyle. “Automatic Optimization
of Thread-Coarsening for Graphics Processors”. In: PACT. ACM,
2014, pages 455–466.

[Mas87] Henry Massalin. Superoptimizer – A Look at the Smallest Program.
1987.

[MF13] A. W. Memon and G. Fursin. “Crowdtuning: systematizing auto-
tuning using predictive modeling and crowdsourcing”. In: PARCO.
2013.

[Mik10] Tomas Mikolov. “Recurrent Neural Network based Language Model”.
In: Interspeech. 2010.

[MS10] J. Misra and I. Saha. “Artificial neural networks in hardware: A sur-
vey of two decades of progress”. In: Neurocomputing 74.1-3 (2010),
pages 239–255.

[Mni+15] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostro-
vski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D.
Kumaran, D. Wierstra, S. Legg, and D. Hassabis. “Human-level
control through deep reinforcement learning”. In: Nature 518.7540
(2015).

[NC15] C. Nugteren and V. Codreanu. “CLTune: A Generic Auto-Tuner
for OpenCL Kernels”. In: MCSoC. 2015.

[Ogi+15] W. F. Ogilvie, P. Petoumenos, Z. Wang, and H. Leather. “Intelli-
gent Heuristic Construction with Active Learning”. In: CPC. 2015.

[PF10] Everett H. Phillips and Massimiliano Fatica. “Implementing the
Himeno benchmark with CUDA on GPU clusters”. In: IPDPS.
2010.

[Pot+15] R. Potter, P. Keir, R.J. Bradford, and A. Murray. “Kernel compo-
sition in SYCL”. In: IWOCL. 2015.

[RVY14] V. Raychev, M. Vechev, and E. Yahav. “Code Completion with
Statistical Language Models”. In: PLDI. 2014.

[RVK15] Veselin Raychev, Martin Vechev, and Andreas Krause. “Predicting
Program Properties from “Big Code””. In: POPL. 2015.

[Reg+12] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang.
“Test-case reduction for C compiler bugs”. In: PLDI. 2012, pages 335–
346.

[Ryo+08a] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S.
Stone, David B. Kirk, and Wen-mei W. Hwu. “Optimization prin-
ciples and application performance evaluation of a multithreaded
GPU using CUDA”. In: PPoPP (2008), page 73.

21

[Ryo+08b] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Bagh-
sorkhi, Sain-Zee Ueng, John a. Stratton, and Wen-mei W. Hwu.
“Program optimization space pruning for a multithreaded GPU”.
In: CGO. New York, New York, USA: IEEE, 2008, pages 195–204.
url: http://portal.acm.org/citation.cfm?doid=
1356058.1356084.

[Smi16] C. Smith. “MapReduce Program Synthesis”. In: PLDI. 2016.
[SMR03] M. Stephenson, M. Martin, and U. O. Reilly. “Meta Optimization:

Improving Compiler Heuristics with Machine Learning”. In: PLDI.
2003.

[SFD15] Michel Steuwer, Christian Fensch, and Christophe Dubach. “Pat-
terns and Rewrite Rules for Systematic Code Generation From
High-Level Functional Patterns to High-Performance OpenCL Code”.
In: arXiv:1502.02389 (2015).

[SSN12] M. Sundermeyer, R. Schl, and H. Ney. “LSTM Neural Networks
for Language Modeling”. In: Interspeech. 2012.

[SVL14] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to Sequence
Learning with Neural Networks”. In: NIPS. 2014.

[Tru+16] L. Truong, R. Barik, E. Totoni, H. Liu, C. Markley, A. Fox, and T.
Shpeisman. “Latte: a language, compiler, and runtime for elegant
and efficient deep neural networks”. In: PLDI. 2016.

[VFS15] B. Vasilescu, V. Filkov, and A. Serebrenik. “Perceptions of Diver-
sity on GitHub: A User Survey”. In: Chase (2015).

[Vin+15] O. Vinyals, A Toshev, S Bengio, and D Erhan. “Show and Tell: A
Neural Image Caption Generator”. In: CVPR (2015).

[VDP09] Y. Voronenko, F. De Mesmay, and M. Püschel. “Computer Gener-
ation of General Size Linear Transform Libraries”. In: CGO. IEEE,
2009, pages 102–113.

[WM15] M. Wahib and N. Maruyama. “Automated GPU Kernel Trans-
formations in Large-Scale Production Stencil Applications”. In:
HPDC. 2015.

[Whi+15] M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk.
“Toward Deep Learning Software Repositories”. In: MSR. 2015.

[WYT13] E. Wong, J. Yang, and L. Tan. “AutoComment: Mining Question
and Answer Sites for Automatic Comment Generation”. In: ASE.
IEEE, 2013, pages 562–567.

[Wu+14] Y. Wu, J. Kropczynski, P. C. Shih, and J. M. Carroll. “Explor-
ing the Ecosystem of Software Developers on GitHub and Other
Platforms”. In: CSCW. 2014, pages 265–268.

[Xio+16] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke,
D. Yu, and G. Zweig. “Achieving Human Parity in Conversational
Speech Recognition”. In: arXiv:1610.05256 (2016).

22

http://portal.acm.org/citation.cfm?doid=1356058.1356084
http://portal.acm.org/citation.cfm?doid=1356058.1356084

[Yan+11] X. Yang, Y. Chen, E. Eide, and J. Regehr. “Finding and Under-
standing Bugs in C Compilers”. In: PLDI. 2011.

[ZIE16] R. Zhang, P. Isola, and A. A. Efros. “Colorful Image Colorization”.
In: arXiv:1603.08511 (2016).

[ZM12] Yongpeng Zhang and Frank Mueller. “Auto-generation and Auto-
tuning of 3D Stencil Codes on GPU clusters”. In: CGO. IEEE,
2012, pages 155–164.

23

Autotuning OpenCL Workgroup Size for Stencil Patterns

Chris Cummins Pavlos Petoumenos Michel Steuwer Hugh Leather
University of Edinburgh

c.cummins@ed.ac.uk, ppetoume@inf.ed.ac.uk, michel.steuwer@ed.ac.uk, hleather@inf.ed.ac.uk

Abstract
Selecting an appropriate workgroup size is critical
for the performance of OpenCL kernels, and requires
knowledge of the underlying hardware, the data be-
ing operated on, and the implementation of the kernel.
This makes portable performance of OpenCL programs
a challenging goal, since simple heuristics and statically
chosen values fail to exploit the available performance.
To address this, we propose the use of machine learning-
enabled autotuning to automatically predict workgroup
sizes for stencil patterns on CPUs and multi-GPUs.

We present three methodologies for predicting work-
group sizes. The first, using classifiers to select the op-
timal workgroup size. The second and third proposed
methodologies employ the novel use of regressors for
performing classification by predicting the runtime of
kernels and the relative performance of different work-
group sizes, respectively. We evaluate the effectiveness
of each technique in an empirical study of 429 combi-
nations of architecture, kernel, and dataset, comparing
an average of 629 different workgroup sizes for each. We
find that autotuning provides a median 3.79× speedup
over the best possible fixed workgroup size, achieving
94% of the maximum performance.

1. Introduction
Stencil codes have a variety of computationally demand-
ing uses from fluid dynamics to quantum mechanics. Ef-
ficient, tuned stencil implementations are highly sought
after, with early work in 2003 by Bolz et al. demon-
strating the capability of GPUs for massively paral-
lel stencil operations [1]. Since then, the introduction
of the OpenCL standard has introduced greater pro-
grammability of heterogeneous devices by providing a
vendor-independent layer of abstraction for data par-
allel programming of CPUs, GPUs, DSPs, and other
devices [2]. However, achieving portable performance of
OpenCL programs is a hard task — OpenCL kernels are
sensitive to properties of the underlying hardware, to
the implementation, and even to the dataset that is op-
erated upon. This forces developers to laboriously hand
tune performance on a case-by-case basis, since simple
heuristics fail to exploit the available performance.

In this paper, we demonstrate how machine learning-
enabled autotuning can address this issue for one such
optimisation parameter of OpenCL programs — that of
workgroup size. The 2D optimisation space of OpenCL
kernel workgroup sizes is complex and non-linear, mak-
ing it resistant to analytical modelling. Successfully ap-
plying machine learning to such a space requires plen-
tiful training data, the careful selection of features, and
an appropriate classification approach. The approaches
presented in this paper use features extracted from
the architecture and kernel, and training data collected
from synthetic benchmarks to predict workgroup sizes
for unseen programs.

2. The SkelCL Stencil Pattern
Introduced in [3], SkelCL is an Algorithmic Skeleton li-
brary which provides OpenCL implementations of data
parallel patterns for heterogeneous parallelism using
CPUs and multi-GPUs. Figure 1 shows the components
of the SkelCL stencil pattern, which applies a user-
provided customising function to each element of a 2D
matrix. The value of each element is updated based on
its current value and the value of one or more neigh-
bouring elements, called the border region. The border
region describes a rectangular region about each cell,
and is defined in terms of the number of cells in the
border region to the north, east, south, and west of each
cell. Where elements of a border region fall outside of
the matrix bounds, values are substituted from either
a predefined padding value, or the value of the nearest
cell within the matrix, determined by the user.

When a SkelCL stencil pattern is executed, each
of the matrix elements are mapped to OpenCL work-
items; and this collection of work-items is divided into
workgroups for execution on the target hardware. A
work-item reads the value of its corresponding matrix
element and the surrounding elements defined by the
border region. Since the border regions of neighbour-
ing elements overlap, each element in the matrix is read
multiple times. Because of this, a tile of elements of the
size of the workgroup and the perimeter border region
is allocated as a contiguous block in local memory. This
greatly reduces the latency of repeated memory accesses

1 2016/1/6

Work-item

Workgroup

Matrix

Tile

wc

wr

Border region

Figure 1: The components of a stencil: an input matrix
is decomposed into workgroups, consisting of wr × wc

elements. Each element is mapped to a work-item. Each
work-item operates on its corresponding element and a
surrounding border region (in this example, 1 element
to the south, and 2 elements to the north, east, and
west).

performed by the work-items. As a result, changing the
workgroup size affects both the number of workgroups
which can be active simultaneously, and the amount of
local memory required for each workgroup. While the
user defines the size, type, and border region of the ma-
trix being operated upon, it is the responsibility of the
SkelCL stencil implementation to select an appropriate
workgroup size to use.

3. Autotuning Workgroup Size
Selecting the appropriate workgroup size for an OpenCL
kernel depends on the properties of the kernel itself,
underlying architecture, and dataset. For a given sce-
nario (that is, a combination of kernel, architecture,
and dataset), the goal of this work is to harness machine
learning to predict a performant workgroup size to use,
based on some prior knowledge of the performance of
workgroup sizes for other scenarios. In this section, we
describe the optimisation space and the steps required
to apply machine learning. The autotuning algorithms
are described in Section 4.

3.1 Constraints
The space of possible workgroup sizes W is constrained
by properties of both the architecture and kernel. Each
OpenCL device imposes a maximum workgroup size
which can be statically checked through the OpenCL
Device API. This constraint reflects architectural lim-
itations of how code is mapped to the underlying exe-
cution hardware. Typical values are powers of two, e.g.
1024, 4096, 8192. Additionally, the OpenCL runtime en-
forces a maximum workgroup size on a per-kernel basis.
This value can be queried at runtime once a program
has been compiled for a specific execution device. Fac-
tors which affect a kernel’s maximum workgroup size
include the number of registers required, and the avail-

able number of SIMD execution units for each type of
executable instruction.

While in theory, any workgroup size which satisfies
the device and kernel workgroup size constraints should
provide a valid program, in practice we find that some
combinations of scenario and workgroup size cause a
CL_OUT_OF_RESOURCES error to be thrown when the ker-
nel is launched. We refer to these workgroup sizes as
refused parameters. Note that in many OpenCL imple-
mentations, this error type acts as a generic placeholder
and may not necessarily indicate that the underlying
cause of the error was due to finite resources constraints.
We define the space of legal workgroup sizes for a given
scenario s as those which satisfy the architectural and
kernel constraints, and are not refused:

Wlegal(s) = {w|w ∈W, w < Wmax(s)} −Wrefused(s) (1)

Where Wmax(s) can be determined at runtime prior to
the kernels execution, but the set Wrefused(s) can only
be discovered emergently. The set of safe parameters
are those which are legal for all scenarios:

Wsafe = ∩{Wlegal(s)|s ∈ S} (2)

3.2 Stencil and Architectural Features
Since properties of the architecture, program, and
dataset all contribute to the performance of a work-
group size for a particular scenario, the success of
a machine learning system depends on the ability to
translate these properties into meaningful explanatory
variables — features. For each scenario, 102 features
are extracted describing the architecture, kernel, and
dataset.

Architecture features are extracted using the OpenCL
Device API to query properties such as the size of lo-
cal memory, maximum work group size, and number
of compute units. Kernel features are extracted from
the source code stencil kernels by compiling first to
LLVM IR bitcode, and using statistics passes to obtain
static instruction counts for each type of instruction
present in the kernel, as well as the total number of
instructions. These instruction counts are divided by
the total number of instructions to produce instruction
densities. Dataset features include the input and output
data types, and the 2D matrix dimensions.

3.3 Training Data
Training data is collected by measuring the runtimes of
stencil programs using different workgroup sizes. These
stencil programs are generated synthetically using a
statistical template substitution engine, which allows
a larger exploration of the program space than is pos-
sible using solely hand-written benchmarks. A stencil
template is parameterised first by stencil shape (one
parameter for each of the four directions), input and

2 2016/1/6

Algorithm 1 Prediction using classifiers
Require: scenario s
Ensure: workgroup size w
1: procedure Baseline(s)
2: w ← classify(f(s))
3: if w ∈Wlegal(s) then
4: return w
5: else
6: return arg max

w∈Wsafe

(∏
s∈Straining

p(s, w)
)1/|Straining|

7: end if
8: end procedure

9: procedure Random(s)
10: w ← classify(f(s))
11: while w 6∈Wlegal(s) do
12: W ←

{
w|w < Wmax(s), w 6∈Wrefused(s)

}
13: w ← random selection w ∈W
14: end while
15: return w
16: end procedure

17: procedure NearestNeighbour(s)
18: w ← classify(f(s))
19: while w 6∈Wlegal(s) do
20: dmin ←∞
21: wclosest ← null
22: for c ∈

{
w|w < Wmax(s), w 6∈Wrefused(s)

}
do

23: d←
√

(cr − wr)2 + (cc − wc)2

24: if d < dmin then
25: dmin ← d
26: wclosest ← c
27: end if
28: end for
29: w ← wclosest

30: end while
31: return w
32: end procedure

output data types (either integers, or single or dou-
ble precision floating points), and complexity — a sim-
ple boolean metric for indicating the desired number
of memory accesses and instructions per iteration, re-
flecting the relatively bi-modal nature of stencil codes,
either compute intensive (e.g. finite difference time do-
main and other PDE solvers), or lightweight (e.g. Game
of Life and Gaussian blur).

4. Machine Learning Methods
The aim of this work is to design a system which pre-
dicts performant workgroup sizes for unseen scenarios,
given a set of prior performance observations. This sec-
tion presents three contrasting methods for achieving
this goal.

4.1 Predicting Oracle Workgroup Sizes
The first approach is detailed in Algorithm 1. By consid-
ering the set of possible workgroup sizes as a hypothesis
space, we train a classifier to predict, for a given set of
features, the oracle workgroup size. The oracle work-

Algorithm 2 Prediction using regressors
Require: scenario s, regressor R(x, w), fitness function ∆(x)
Ensure: workgroup size w
1: W ← {w|w < Wmax(s)} −Wrefused(s) . Candidates.
2: w ← arg max

w∈W

∆(R(f(s), w)) . Select best candidate.

3: while w 6∈Wlegal(s) do
4: Wrefused(s) = Wrefused(s) + {w}
5: W ←W − {w} . Remove candidate from selection.
6: w ← arg max

w∈W

∆(R(f(s), w)) . Select best candidate.

7: end while
8: return w

group size Ω(s) is the workgroup size which provides
the lowest mean runtime t(s, w) for a scenario s:

Ω(s) = arg min
w∈Wlegal(s)

t(s, w) (3)

Training a classifier for this purpose requires pairs of
stencil features f(s) to be labelled with their oracle
workgroup size for a set of training scenarios Straining:

Dtraining = {(f(s),Ω(s)) |s ∈ Straining} (4)

After training, the classifier predicts workgroup sizes for
unseen scenarios from the set of oracle workgroup sizes
from the training set. This is a common and intuitive
approach to autotuning, in that a classifier predicts the
best parameter value based on what worked well for the
training data. However, given the constrained space of
workgroup sizes, this presents the problem that future
scenarios may have different sets of legal workgroup
sizes to that of the training data, i.e.:

⋃

∀s∈Sfuture

Wlegal(s) * {Ω(s)|s ∈ Straining} (5)

This results in an autotuner which may predict work-
group sizes that are not legal for all scenarios, either
because they exceed Wmax(s), or because parameters
are refused, w ∈ Wrefused(s). For these cases, we eval-
uate the effectiveness of three fallback handlers, which
will iteratively select new workgroup sizes until a legal
one is found:
1. Baseline — select the workgroup size which provides

the highest average case performance from the set of
safe workgroup sizes.

2. Random — select a random workgroup size which is
expected from prior observations to be legal.

3. Nearest Neighbour — select the workgroup size
which from prior observations is expected to be le-
gal, and has the lowest Euclidian distance to the
prediction.

4.2 Predicting Kernel Runtimes
A problem of predicting oracle workgroup sizes is that,
for each training instance, an exhaustive search of the

3 2016/1/6

optimisation space must be performed in order to find
the oracle workgroup size. An alternative approach is to
instead predict the expected runtime of a kernel given a
specific workgroup size. Given training data consisting
of (f(s), w, t) tuples, where f(s) are scenario features,
w is the workgroup size, and t is the observed runtime,
we train a regressor R(f(s), w) to predict the runtime
of scenario and workgroup size combinations. The se-
lected workgroup size Ω̄(s) is then the workgroup size
from a pool of candidates which minimises the output
of the regressor. Algorithm 2 formalises this approach
of autotuning with regressors. A fitness function ∆(x)
computes the reciprocal of the predicted runtime so as
to favour shorter over longer runtimes. Note that the al-
gorithm is self correcting in the presence of refused pa-
rameters — if a workgroup size is refused, it is removed
from the candidate pool, and the next best candidate
is chosen. This removes the need for fallback handlers.
Importantly, this technique allows for training on data
for which the oracle workgroup size is unknown, mean-
ing that a full exploration of the space is not required in
order to gather a training instance, as is the case with
classifiers.

4.3 Predicting Relative Performance
Accurately predicting the runtime of arbitrary code is
a difficult problem. It may instead be more effective to
predict the relative performance of two different work-
group sizes for the same kernel. To do this, we pre-
dict the speedup of a workgroup size over a baseline.
This baseline is the workgroup size which provides the
best average case performance across all scenarios and
is known to be safe. Such a baseline value represents
the best possible performance which can be achieved us-
ing a single, fixed workgroup size. As when predicting
runtimes, this approach performs classification using re-
gressors (Algorithm 2). We train a regressor R(f(s), w)
to predict the relative performance of workgroup size
w over a baseline parameter for scenario s. The fitness
function returns the output of the regressor, so the se-
lected workgroup size Ω̄(s) is the workgroup size from
a pool of candidates which is predicted to provide the
best relative performance. This has the same advanta-
geous properties as predicting runtimes, but by training
using relative performance, we negate the challenges of
predicting dynamic code behaviour.

5. Experimental Setup
To evaluate the performance of the presented autotun-
ing techniques, an exhaustive enumeration of the work-
group size optimisation space for 429 combinations of
architecture, program, and dataset was performed.

Table 1 describes the experimental platforms and
OpenCL devices used. Each platform was unloaded,

frequency governors disabled, and benchmark processes
set to the highest priority available to the task sched-
uler. Datasets and programs were stored in an in-
memory file system. All runtimes were recorded with
millisecond precision using OpenCL’s Profiling API to
record the kernel execution time. The workgroup size
space was enumerated for each combination of wr and
wc values in multiples of 2, up to the maximum work-
group size. For each combination of scenario and work-
group size, a minimum of 30 runtimes were recorded.

In addition to the synthetic stencil benchmarks de-
scribed in Section 3.3, six stencil kernels taken from
four reference implementations of standard stencil ap-
plications from the fields of image processing, cellu-
lar automata, and partial differential equation solvers
are used: Canny Edge Detection, Conway’s Game of
Life, Heat Equation, and Gaussian Blur. Table 2 shows
details of the stencil kernels for these reference appli-
cations and the synthetic training benchmarks used.
Dataset sizes of size 512×512, 1024×1024, 2048×2048,
and 4096× 4096 were used.

Program behavior is validated by comparing pro-
gram output against a gold standard output collected
by executing each of the real-world benchmarks pro-
grams using the baseline workgroup size. The output
of real-world benchmarks with other workgroup sizes is
compared to this gold standard output to test for cor-
rect program execution.

Five different classification algorithms are used to
predict oracle workgroup sizes, chosen for their con-
trasting properties: Naive Bayes, SMO, Logistic Regres-
sion, J48 Decision tree, and Random Forest [4]. For
regression, a Random Forest with regression trees is
used, chosen because of its efficient handling of large
feature sets compared to linear models [5]. The autotun-
ing system is implemented in Python as a system dae-
mon. SkelCL stencil programs request workgroup sizes
from this daemon, which performs feature extraction
and classification.

6. Performance Results
This section describes the performance results of enu-
merating the workgroup size optimisation space. The ef-
fectiveness of autotuning techniques for exploiting this
space are examined in Section 7. The experimental re-
sults consist of measured runtimes for a set of test cases,
where a test case τi consists of a scenario, workgroup
size pair τi = (si, wi), and is associated with a sample of
observed runtimes of the program. A total of 269813 test
cases were evaluated, which represents an exhaustive
enumeration of the workgroup size optimisation space
for 429 scenarios. For each scenario, runtimes for an av-
erage of 629 (max 7260) unique workgroup sizes were

4 2016/1/6

Host Host Memory OpenCL Device Compute units Frequency Local Memory Global Cache Global Memory

Intel i5-2430M 8 GB CPU 4 2400 Hz 32 KB 256 KB 7937 MB
Intel i5-4570 8 GB CPU 4 3200 Hz 32 KB 256 KB 7901 MB
Intel i7-3820 8 GB CPU 8 1200 Hz 32 KB 256 KB 7944 MB
Intel i7-3820 8 GB AMD Tahiti 7970 32 1000 Hz 32 KB 16 KB 2959 MB
Intel i7-3820 8 GB Nvidia GTX 590 1 1215 Hz 48 KB 256 KB 1536 MB
Intel i7-2600K 16 GB Nvidia GTX 690 8 1019 Hz 48 KB 128 KB 2048 MB
Intel i7-2600 8 GB Nvidia GTX TITAN 14 980 Hz 48 KB 224 KB 6144 MB

Table 1: Specification of experimental platforms and OpenCL devices.

Name North South East West Instruction
Count

synthetic-a 1–30 1–30 1–30 1–30 67–137
synthetic-b 1–30 1–30 1–30 1–30 592–706
gaussian 1–10 1–10 1–10 1–10 82–83
gol 1 1 1 1 190
he 1 1 1 1 113
nms 1 1 1 1 224
sobel 1 1 1 1 246
threshold 0 0 0 0 46

Table 2: Stencil kernels, border sizes (north, south, east,
and west), and static instruction counts.

measured. The average sample size for each test case is
83 (min 33, total 16917118).

The workgroup size optimisation space is non-linear
and complex, as shown in Figure 2, which plots the
distribution of optimal workgroup sizes. Across the 429
scenarios, there are 135 distinct optimal workgroup sizes
(31.5%). The average speedup of the oracle workgroup
size over the worst workgroup size for each scenario is
15.14× (min 1.03×, max 207.72×).

Of the 8504 unique workgroup sizes tested, 11.4%
were refused in one or more test cases, with an aver-
age of 5.5% test cases leading to refused parameters.
There are certain patterns to the refused parameters:
for example, workgroup sizes which contain wc and wr

values which are multiples of eight are less frequently
refused, since eight is a common width of SIMD vec-
tor operations [6]. However, a refused parameter is an
obvious inconvenience to the user, as one would expect
that any workgroup size within the specified maximum
should generate a working program, if not a performant
one.

Experimental results suggest that the problem is ven-
dor — or at least device — specific. Figure 3 shows the
ratio of refused test cases, grouped by device. We see
many more refused parameters for test cases on Intel
CPU devices than any other type, while no workgroup
sizes were refused by the AMD GPU. The exact under-
lying cause for these refused parameters is unknown,
but can likely by explained by inconsistencies or er-
rors in specific OpenCL driver implementations. Note
that the ratio of refused parameters decreases across
the three generations of Nvidia GPUs: GTX 590 (2011),
GTX 690 (2012), and GTX TITAN (2013). For now, it
is imperative that any autotuning system is capable of

wc

2
20

40

60

80

100

w
r

2
20

40

60

80

100

O
ra

cle
freq

u
en

cy
(lo

g
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Figure 2: Oracle frequency counts for a subset of the
workgroup sizes, wc ≤ 100, wr ≤ 100. There are 135
unique oracle workgroup sizes. The most common oracle
workgroup size is w(64×4), optimal for 15% of scenarios.

adapting to these refused parameters by suggesting al-
ternatives when they occur.

The baseline parameter is the workgroup size provid-
ing the best overall performance while being legal for all
scenarios. Because of refused parameters, only a single
workgroup size w(4×4) from the set of experimental re-
sults is found to have a legality of 100%, suggesting that
an adaptive approach to setting workgroup size is nec-
essary not just for the sake of maximising performance,
but also for guaranteeing program execution. The util-
ity of the baseline parameter is that it represents the
best performance that can be achieved through static
tuning of the workgroup size parameter; however, com-
pared to the oracle workgroup size for each scenario,
the baseline parameter achieves only 24% of the opti-
mal performance.

7. Evaluation of Autotuning Methods
In this section we evaluate the effectiveness of the three
proposed autotuning techniques for predicting perfor-
mant workgroup sizes. For each autotuning technique,
we partition the experimental data into training and
testing sets. Three strategies for partitioning the data
are used: the first is a 10-fold cross-validation; the sec-

5 2016/1/6

In
te

l
i5

-2
4

3
0

M

In
te

l
i5

-4
5

7
0

N
vi

d
ia

G
T

X
5

9
0

N
vi

d
ia

G
T

X
6

9
0

In
te

l
i7

-3
8

2
0

N
vi

d
ia

G
T

X
T

IT
A

N

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

R
a

ti
o

re
fu

se
d

(%
)

Figure 3: The ratio of test cases with refused workgroup
sizes, grouped by OpenCL device ID. No parameters
were refused by the AMD device.

ond is to divide the data such that only data collected
from synthetic benchmarks are used for training and
only data collected from the real-world benchmarks are
used for testing; the third strategy is to create leave-
one-out partitions for each unique device, kernel, and
dataset. For each combination of autotuning technique
and testing dataset, we evaluate each of the workgroup
sizes predicted for the testing data using the following
metrics:
• time (real) — the time taken to make the autotuning

prediction. This includes classification time and any
communication overheads.

• accuracy (binary) — whether the predicted work-
group size is the true oracle, w = Ω(s).

• validity (binary) — whether the predicted work-
group size satisfies the workgroup size constraints
constraints, w < Wmax(s).

• refused (binary) — whether the predicted workgroup
size is refused, w ∈Wrefused(s).

• performance (real) — the performance of the pre-
dicted workgroup size relative to the oracle for that
scenario.

• speedup (real) — the relative performance of the
predicted workgroup size relative to the baseline
workgroup size w(4×4).

The validty and refused metrics measure how often fall-
back strategies are required to select a legal workgroup
size w ∈Wlegal(s). This is only required for the classifi-
cation approach to autotuning, since the process of se-
lecting workgroup sizes using regressors respects work-
group size constraints.

7.1 Predicting Oracle Workgroup Size
Figure 4 shows the results when classifiers are trained
using data from synthetic benchmarks and tested using
real-world benchmarks. With the exception of the Ze-
roR, a dummy classifier which “predicts” only the base-
line workgroup size w(4×4), the other classifiers achieve

good speedups over the baseline, ranging from 4.61×
to 5.05× when averaged across all test sets. The differ-
ences in speedups between classifiers is not significant,
with the exception of SimpleLogistic, which performs
poorly when trained with synthetic benchmarks and
tested against real-world programs. This suggests the
model over-fitting to features of the synthetic bench-
marks which are not shared by the real-world tests. Of
the three fallback handlers, NearestNeighbour pro-
vides the best performance, indicating that it success-
fully exploits structure in the optimisation space. In our
evaluation, the largest number of iterations of a fallback
handler required before selecting a legal workgroup size
was 2.

7.2 Predicting with Regressors
Figure 5 shows a summary of results for autotuning
using regressors to predict kernel runtimes (5a) and
speedups (5b). Of the two regression techniques, pre-
dicting the speedup of workgroup sizes is much more
successful than predicting the runtime. This is most
likely caused by the inherent difficulty in predicting the
runtime of arbitrary code, where dynamic factors such
as flow control and loop bounds are not captured by the
instruction counts which are used as features for the ma-
chine learning models. The average speedup achieved by
predicting runtimes is 4.14×. For predicting speedups,
the average is 5.57×, the highest of all of the autotuning
techniques.

7.3 Autotuning Overheads
Comparing the classification times of Figures 4 and 5
shows that the prediction overhead of regressors is sig-
nificantly greater than classifiers. This is because, while
a classifier makes a single prediction, the number of
predictions required of a regressor grows with the size
of Wmax(s), since classification with regression requires
making predictions for all w ∈ {w|w < Wmax(s)}. The
fastest classifier is J48, due to the it’s simplicity — it
can be implemented as a sequence of nested if and else
statements.

7.4 Comparison with Human Expert
In the original implementation of the SkelCL stencil
pattern [7], Steuwer et al. selected a workgroup size
of w(32×4) in an evaluation of 4 stencil operations on
a Tesla S1070 system. In our evaluation of 429 combi-
nations of kernel, architecture, and dataset, we found
that this workgroup size is refused by 2.6% of scenar-
ios, making it unsuitable for use as a baseline. However,
if we remove the scenarios for which w(32×4) is not a
legal workgroup size, we can directly compare the per-
formance against the autotuning predictions.

Figure 6 plots the distributions and Interquartile
Range (IQR) of all speedups over the human expert

6 2016/1/6

ZeroR NaiveBayes SMO SimpleLogistic J48 RandomForest

0

2

4

6

8

10

C
la

ss
ifi

ca
ti

o
n

ti
m

e
(m

s)

ZeroR NaiveBayes SMO SimpleLogistic J48 RandomForest

0%

5%

10%

15%

20%

25%

30%

35%

R
a

ti
o

Illegal Refused Accurate

ZeroR NaiveBayes SMO SimpleLogistic J48 RandomForest

0

1

2

3

4

5

6

7

S
p

ee
d

u
p

Baseline Random NearestNeighbour

ZeroR NaiveBayes SMO SimpleLogistic J48 RandomForest

0%

20%

40%

60%

80%

100%

P
er

fo
rm

a
n

ce

Baseline Random NearestNeighbour

Figure 4: Autotuning performance using classifiers and
synthetic benchmarks. Each classifier is trained on data
collected from synthetic stencil applications, and tested
for prediction quality using data from 6 real-world
benchmarks. 95% confidence intervals are shown where
appropriate.

parameter for each autotuning technique. The distribu-
tions show consistent classification results for the five
classification techniques, with the speedup at Q1 for
all classifiers being ≥ 1.0×. The IQR for all classifiers is
< 0.5, but there are outliers with speedups both well be-
low 1.0× and well above 2.0×. In contrast, the speedups
achieved using regressors to predict runtimes have a
lower range, but also a lower median and a larger IQR.
Clearly, this approach is the least effective of the evalu-
ated autotuning techniques. Using regressors to predict
relative performance is more successful, achieving the
highest median speedup of all the techniques (1.33×).

8. Related Work
Ganapathi et al. demonstrated early attempts at au-
totuning multicore stencil codes in [8], drawing upon
the successes of statistical machine learning techniques
in the compiler community. They use Kernel Canoni-
cal Correlation Analysis to build correlations between

K
er

n
el

1
0

-f
o

ld

D
ev

ic
e

S
yn

th
et

ic

D
a

ta
se

t

A
ve

ra
g

e

0

20

40

60

80

100

120

140

C
la

ss
ifi

ca
ti

o
n

ti
m

e
(m

s)

K
er

n
el

1
0

-f
o

ld

D
ev

ic
e

S
yn

th
et

ic

D
a

ta
se

t

A
ve

ra
g

e

0

1

2

3

4

5

6

7

S
p

ee
d

u
p

K
er

n
el

1
0

-f
o

ld

D
ev

ic
e

S
yn

th
et

ic

D
a

ta
se

t

A
ve

ra
g

e
0%

20%

40%

60%

80%

100%

P
er

fo
rm

a
n

ce

K
er

n
el

1
0

-f
o

ld

D
ev

ic
e

S
yn

th
et

ic

D
a

ta
se

t

A
ve

ra
g

e

0%

2%

4%

6%

8%

10%

12%

A
cc

u
ra

cy

(a)
K

er
n

el

1
0

-f
o

ld

D
ev

ic
e

S
yn

th
et

ic

D
a

ta
se

t

A
ve

ra
g

e

0

20

40

60

80

100

120

140

C
la

ss
ifi

ca
ti

o
n

ti
m

e
(m

s)

K
er

n
el

1
0

-f
o

ld

D
ev

ic
e

S
yn

th
et

ic

D
a

ta
se

t

A
ve

ra
g

e

0

1

2

3

4

5

6

7

S
p

ee
d

u
p

K
er

n
el

1
0

-f
o

ld

D
ev

ic
e

S
yn

th
et

ic

D
a

ta
se

t

A
ve

ra
g

e

0%

20%

40%

60%

80%

100%

P
er

fo
rm

a
n

ce

K
er

n
el

1
0

-f
o

ld

D
ev

ic
e

S
yn

th
et

ic

D
a

ta
se

t

A
ve

ra
g

e

0%

2%

4%

6%

8%

10%

12%

A
cc

u
ra

cy

(b)

Figure 5: Autotuning performance for each type of test
dataset using regressors to predict: (a) kernel runtimes,
and (b) relative performance of workgroup sizes.

stencil features and optimisation parameters. Their use
of KCCA restricts the scalability of their system, as
the complexity of model building grows exponentially
with the number of features. A code generator and au-
totuner for 3D Jacobi stencil codes is presented in [9],
although their approach requires a full enumeration of
the parameter space for each new program, and has
no cross-program learning. Similarly, CLTune [10] is an
autotuner which applies iterative search techniques to
user-specified OpenCL parameters. The number of par-
allel mappers and reducers for MapReduce workloads
is tuned in [11] using surrogate models rather than
machine learning, although the optimisation space is
not subject to the level of constraints that OpenCL
workgroup size is. A generic OpenCL autotuner is pre-
sented in [12] which uses neural networks to predict
good configurations of user-specified parameters, al-
though the authors present only a preliminary eval-

7 2016/1/6

J4
8

N
a

iv
eB

ay
es

R
a

n
d

o
m

F
or

es
t

S
im

p
le

L
o

g
is

ti
c

S
M

O

R
u

n
ti

m
e

R
eg

re
ss

io
n

S
p

ee
d

u
p

R
eg

re
ss

io
n

0.0

0.5

1.0

1.5

2.0

2.5

S
p

ee
d

u
p

o
ve

r
h

u
m

a
n

ex
p

er
t

Figure 6: Violin plot of speedups over human expert,
ignoring cases where the workgroup size selected by hu-
man experts is invalid. Classifiers are using Nearest-
Neighbour fallback handlers. Horizontal dashed lines
show the median, Q1, and Q3. Kernel Density Estimates
show the distribution of results. The speedup axis is
fixed to the range 0–2.5 to highlight the IQRs, which
results in some outlier speedups > 2.5 being clipped.

uation using three benchmarks. Both systems require
the user to specify parameters on a per-program ba-
sis. The autotuner presented in this work, embedded
at the skeletal level, requires no user effort for new
programs and is transparent to the user. A DSL and
CUDA code generator for stencils is presented in [13].
Unlike the SkelCL stencil pattern, the generated stencil
codes do not exploit fast local device memory. The auto-
matic generation of synthetic benchmarks using param-
eterised template substitution is presented in [14]. The
authors describe an application of their tool for gener-
ating OpenCL stencil kernels for machine learning, but
do not report any performance results.

9. Conclusions
We present and compare novel methodologies for au-
totuning the workgroup size of stencil patterns using
the established open source library SkelCL. These tech-
niques achieve up to 94% of the maximum performance,
while providing robust fallbacks in the presence of un-
expected behaviour in OpenCL driver implementations.
Of the three techniques proposed, predicting the rela-
tive performances of workgroup sizes using regressors
provides the highest median speedup, whilst predict-
ing the oracle workgroup size using decision tree classi-
fiers adds the lowest runtime overhead. This presents a
trade-off between classification time and training time
that could be explored in future work using a hybrid of
the classifier and regressor techniques presented in this
paper.

In future work, we will extend the autotuner to ac-
commodate additional OpenCL optimisation param-
eters and skeleton patterns. Feature selection can be
evaluated using Principle Component Analysis, as well

exploring the relationship between prediction accu-
racy and the number of synthetic benchmarks used.
A promising avenue for further research is in the tran-
sition towards online machine learning which is enabled
by using regressors to predict kernel runtimes. This
could be combined with the use of adaptive sampling
plans to minimise the number of observations required
to distinguish bad from good parameter values, such
as presented in [15]. Dynamic profiling can be used to
increase the prediction accuracy of kernel runtimes by
capturing the runtime behaviour of stencil kernels.

Acknowledgments
This work was supported by the UK Engineering
and Physical Sciences Research Council under grants
EP/L01503X/1 for the University of Edinburgh School
of Informatics Centre for Doctoral Training in Pervasive
Parallelism (http://pervasiveparallelism.inf.ed.
ac.uk/), EP/H044752/1 (ALEA), and EP/M015793/1
(DIVIDEND).

References
[1] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schroder.

“Sparse matrix solvers on the GPU: conjugate gradients and
multigrid”. In: ACM TOG 22.3 (2003), pp. 917–924.

[2] John E. Stone, David Gohara, and Guochun Shi. “OpenCL:
A Parallel Programming Standard for Heterogeneous Comput-
ing Systems”. In: Computing in Science & Engineering 12.3
(2010), pp. 66–73.

[3] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. “SkelCL - A
Portable Skeleton Library for High-Level GPU Programming”.
In: IPDPSW. IEEE, May 2011, pp. 1176–1182.

[4] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining:
concepts and techniques. Elsevier, 2011.

[5] Leo Breiman. “Random forest”. In: Machine Learning 45.1
(2001), pp. 5–32.

[6] Intel Corporation. OpenCL* Optimization Guide. 2012. url:
https : / / software . intel . com / sites / landingpage / opencl /
optimization-guide/index.htm.

[7] Michel Steuwer, Michael Haidl, Stefan Breuer, and Sergei Gor-
latch. “High-level programming of stencil computations on
multi-GPU systems using the SkelCL library”. In: Parallel Pro-
cessing Letters 24.03 (2014), p. 1441005.

[8] Archana Ganapathi, Kaushik Datta, Armando Fox, and David
Patterson. “A Case for Machine Learning to Optimize Multicore
Performance”. In: HotPar. 2009.

[9] Yongpeng Zhang and Frank Mueller. “Auto-generation and
Auto-tuning of 3D Stencil Codes on GPU clusters”. In: CGO.
2012, pp. 155–164.

[10] Cedric Nugteren and Valeriu Codreanu. “CLTune: A Generic
Auto-Tuner for OpenCL Kernels”. In: MCSoC. IEEE, 2015,
pp. 195–202.

[11] Travis Johnston, Mohammad Alsulmi, Pietro Cicotti, and
Michela Taufer. “Performance Tuning of MapReduce Jobs Using
Surrogate-Based Modeling”. In: ICCS (2015), pp. 49–59.

[12] Thomas L. Falch and Anne C. Elster. “Machine Learning Based
Auto-tuning for Enhanced OpenCL Performance Portability”.
In: IPDPSW. IEEE, 2015, pp. 3–8.

[13] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shall, and Samuel
Williams. “An auto-tuning framework for parallel multicore
stencil computations”. In: IPDPS (2010).

[14] Alton Chiu, Joseph Garvey, and Tarek S Abdelrahman. “Gen-
esis: A Language for Generating Synthetic Training Programs
for Machine Learning”. In: International Conference on Com-
puting Frontiers. ACM, 2015, p. 8.

[15] Hugh Leather, Michael O’Boyle, and Bruce Worton. “Raced
Profiles: Efficient Selection of Competing Compiler Optimiza-
tions”. In: ACM Sigplan Notices 44.7 (2009), pp. 50–59.

8 2016/1/6

Towards Collaborative Performance
Tuning of Algorithmic Skeletons

Chris Cummins Pavlos Petoumenos Michel Steuwer Hugh Leather
University of Edinburgh

c.cummins@ed.ac.uk, ppetoume@inf.ed.ac.uk, michel.steuwer@ed.ac.uk, hleather@inf.ed.ac.uk

Abstract
The physical limitations of microprocessor design have
forced the industry towards increasingly heterogeneous de-
signs to extract performance. This trend has not been
matched with adequate software tools, leading to a grow-
ing disparity between the availability of parallelism and the
ability for application developers to exploit it.

Algorithmic skeletons simplify parallel programming
by providing high-level, reusable patterns of computation.
Achieving performant skeleton implementations is a difficult
task; skeleton authors must attempt to anticipate and tune
for a wide range of architectures and use cases. This results
in implementations that target the general case and cannot
provide the performance advantages that are gained from
tuning low level optimization parameters. Autotuning com-
bined with machine learning offers promising performance
benefits in these situations, but the high cost of training and
lack of available tools limits the practicality of autotuning
for real world programming. We believe that performing
autotuning at the level of the skeleton library can overcome
these issues.

In this work, we present OmniTune — an extensible and
distributed framework for dynamic autotuning of optimiza-
tion parameters at runtime. OmniTune uses a client-server
model with a flexible API to support machine learning en-
abled autotuning. Training data is shared across a network
of cooperating systems, using a collective approach to per-
formance tuning.

We demonstrate the practicality of OmniTune in a case
study using the algorithmic skeleton library SkelCL. By
automatically tuning the workgroup size of OpenCL Stencil
skeleton kernels, we show that that static tuning across
a range of GPUs and programs can achieve only 26% of
the optimal performance, while OmniTune achieves 92%
of this maximum, equating to an average 5.65× speedup.
OmniTune achieves this without introducing a significant
runtime overhead, and enables portable, cross-device and
cross-program tuning.

1. Introduction
General purpose programming with GPUs has been shown
to provide huge parallel throughput, but poses a significant
programming challenge, requiring application developers to
master an unfamiliar programming model (such as provided
by CUDA or OpenCL) and architecture (SIMD with a multi-
level memory hierarchy). As a result, GPGPU programming
is often considered beyond the realm of everyday develop-
ment. If steps are not taken to increase the accessibility of
such parallelism, the gap between potential and utilized per-

formance will continue to widen as hardware core counts
increases.

Algorithmic skeletons offer a solution to this this pro-
grammability challenge by raising the level of abstraction.
This simplifies parallel programming, allowing developers
to focus on solving problems rather than coordinating par-
allel resources. Skeleton frameworks provide robust parallel
implementations of common patterns of computation which
developers parameterise with their application-specific code.
This greatly reduces the challenge of parallel programming,
allowing users to structure their problem-solving logic se-
quentially, while offloading the cognitive cost of parallel co-
ordination to the skeleton library author. The rising number
of skeleton frameworks supporting graphics hardware illus-
trates the demand for high level abstractions for GPGPU
programming [1, 2]. The challenge is in maintaining portable
performance across the breadth of devices in the rapidly de-
veloping GPU and heterogeneous architecture landscape.

1.1 The Performance Portability Challenge
There are many factors — or parameters — which influence
the behavior of parallel programs. For example, setting the
number of threads to launch for a particular algorithm. The
performance of parallel programs is sensitive to the values
of these parameters, and when tuning to maximize perfor-
mance, one size does not fit all. The suitability of parame-
ter values depends on the program implementation, the tar-
get hardware, and the dataset that is operated upon. Iter-
ative compilation and autotuning have been shown to help
in these cases by automating the process of tuning param-
eter values to match individual execution environments [3].
However, there have been few attempts to develop general
mechanisms for these techniques, and the time taken to de-
velop ad-hoc autotuning solutions and gather performance
data is often prohibitively expensive.

We believe that by embedding autotuning at the skeletal
level, it is possible to achieve performance with algorithmic
skeletons that is competitive with — and in some cases,
exceeds — that of hand tuned parallel implementations
which traditionally came at the cost of many man hours
of work from expert programmers to develop.

Incorporating autotuning into algorithmic skeleton li-
braries has two key benefits: first, it minimizes development
effort by requiring only a modification to the skeleton imple-
mentation rather than to every user program; and second,
by targeting a library, it enables a broader and more sub-
stantive range of performance data to be gathered than with
ad-hoc tuning of individual programs.

1 2016/1/6

(a) (b)

Figure 1: The performance of different workgroup sizes for
the same stencil program on two different devices: (a) In-
tel CPU, (b) NVIDIA GPU. Selecting an appropriate work-
group size depends on the execution device.

(a) (b)

Figure 2: The performance of different workgroup sizes for
two different stencil programs on the same execution device.
Selecting an appropriate workgroup size depends on the
program.

1.2 Contributions
The key contributions of this work are:

• The design and implementation of a generic toolset for
autotuning: OmniTune is a novel and extensible frame-
work for collaborative autotuning of optimization param-
eters across the life cycle of programs.

• The integration of OmniTune with an established skele-
ton library for CPU and multi-GPU parallelism, SkelCL [4].
We extend SkelCL to provide autotuning for the selection
of OpenCL workgroup size for Stencil skeletons.

• An empirical evaluation of OmniTune across 7 different
architectures, demonstrating that OmniTune achieves
92% of the best possible performance, providing a median
speedup of 5.65× over the best possible statically chosen
workgroup size.

2. Motivation
In this section we will briefly examine the performance
impact of selecting workgroup size for the SkelCL Stencil
skeleton. A full explanation of SkelCL and the workgroup
size parameter space is given Section 4.

SkelCL uses OpenCL to parallelise skeleton operations
across many threads. In OpenCL, multiple threads are
grouped into workgroups. The shape and size of these groups
is known to have a big impact on performance. For the
SkelCL stencil skeleton, the selection of workgroup size
presents a two dimensional parameter space, consisting of a
number of rows and columns (wr × wc). Measuring and
plotting the runtime of stencil programs using different
workgroup sizes allows us to compare the performance of

Local machine 1
Application 1

Client Logic

Application 2

Client Logic

Application n

Client Logic

Server

 Server Interface

Local
Caches

Autotuning Logic

…

Remote server

Remote

 Remote Interface

Training
Data

TCPDBUS

…

Local machine m

Figure 3: OmniTune system architecture, showing the sepa-
rate components and the one to many relationship between
servers to client applications, and remotes to servers.

different workgroup sizes for different combinations of ar-
chitecture and program. Figure 1 shows this performance
comparison for a single stencil program on two different de-
vices, demonstrating that a good choice of workgroup size is
device dependent. The optimization space of the same sten-
cil benchmark on different devices is radically different: not
only does the optimal workgroup size change between de-
vices, but the performance of suboptimal workgroup sizes is
also dissimilar. The optimization space of 1a has a grid-like
structure, with clear performance advantages of workgroup
sizes at multiples of 8 for wc. A developer specifically tar-
geting this device would learn to select workgroup sizes fol-
lowing this pattern. This domain specific knowledge clearly
does not transfer to the device shown in 1b.

In Figure 2, we compare the performance of two dif-
ferent stencil programs on the same device, showing that
workgroup size choice is also program dependent. In each
of these four examples, the optimal workgroup size changes,
as does the relative performance of suboptimal parameters.
The average speedup of the best over the worst workgroup
size is 37.0×, and the best average performance that can be
achieved using a single fixed workgroup size is only 63% of
the maximum.

SkelCL uses a fixed workgroup size by default. Since both
the execution device and the user-provided stencil code are
not known until runtime, selection of workgroup size should
be made dynamically. To the best of our knowledge, there is
currently no such generic system which meets our require-
ments for lightweight runtime machine learning autotuning
with distributed training sets, and as a result, a variety of
autotuners have been developed ad-hoc and on a per-case
basis.

3. The OmniTune Framework
OmniTune is a novel framework for extensible, distributed
autotuning of parameter values at runtime using machine
learning. It serves as a generic platform for developing au-
totuning solutions, aiming to reduce both the engineering
time required to target new optimization parameters, and
the time to deploy on new systems.

It emphasizes collaborative, online learning of optimiza-
tion spaces. A client-server architecture with clearly delin-
eated separation of concerns minimizes the code footprint in
client applications, enabling quick re-purposing for autotun-
ing targets. OmniTune provides a lightweight interface for
communication between each of the components, and aims

2 2016/1/6

to strike a balance between offering a fully featured environ-
ment for quickly implementing autotuning, while providing
enough flexibility to cater to a wide range of use cases. First,
we describe the overall structure of OmniTune and the ra-
tionale for the design, followed by the interfaces and steps
necessary to apply OmniTune.

3.1 System Architecture
Common implementations of autotuning in the literature
either embed the autotuning logic within each target appli-
cation (e.g. [5]), or take a standalone approach in which the
autotuner is a program which must be externally invoked by
the user to tune a target application (e.g. [6]). Embedding
the autotuner within each target application has the ad-
vantage of providing “always-on” behavior, but is infeasible
for complex systems in which the cost of building machine
learning models must be added to each program run. The
standalone approach separates the autotuning logic, at the
expense of adding one additional step to the build process.
The approach taken in OmniTune aims to combine the ad-
vantages of both techniques by implementing autotuning as
a service, in which a standalone autotuning server performs
the heavy lifting of managing training data and machine
learning models, with a minimal set of lightweight commu-
nication logic to be embedded in target applications.

OmniTune is built around a three tier client-server model,
shown in Figure 3. The applications which are to be au-
totuned are the clients. These clients communicate with a
system-wide server, which handles autotuning requests. The
server communicates and caches data sourced from a remote
server, which maintains a global store of all autotuning data.
There is a many to one relationship between clients, servers,
and remotes, such that a single remote may handle con-
nections to multiple servers, which in turn may accept con-
nections from multiple clients. This design has two primary
advantages: the first is that it decouples the autotuning logic
from that of the client program, allowing developers to eas-
ily repurpose the autotuning framework to target additional
optimization parameters without a significant development
overhead for the target applications; the second advantage
is that this enables collective tuning, in which training data
gathered from a range of devices can be accessed and added
to by any OmniTune server.

The OmniTune framework is implemented as a set of
Python classes which are extended to target specific pa-
rameters. The generic implementation of OmniTune’s server
and remote components consists of 8987 lines of Python and
MySQL code. No client logic is provided, since that is use
case dependent (See Section 4 for an example implemen-
tation for SkelCL). Inter-process communication between
client programs and the server uses the D-Bus protocol. D-
Bus is cross-platform, and bindings are available for most
major programming languages, allowing flexibility for use
with a range of clients. Communication between servers and
remotes uses TCP/IP (we used an Amazon Web Services
database instance for development).

3.2 Autotuning Behavior
The goal of machine learning enabled autotuning is to build
models from empirical performance data of past programs
to select parameter values for new unseen programs. Instead
of an iterative process of trial and improvement, parame-
ter values are predicted, by building correlations between
performance, and features (explanatory variables). The data
used to build such models is called training data. OmniTune

supports autotuning using a separate offline training phase,
online training, or a mixture of both. For each autotuning-
capable machine, an OmniTune server acts as an interme-
diary between training data and the client application, and
hosts the autotuning logic. On launch, a server requests the
latest training data from the remote, which it uses to build
the relevant models for performing prediction of optimiza-
tion parameter values. If additional training data is gathered
by the server, this can be uploaded to the remote.

While the data types of the autotuning interface are
application-specific (e.g. a binary flag or one or more nu-
meric values), the general pattern is that a client application
will request parameter values from an OmniTune server by
sending it a set of explanatory variables. The server will then
use machine learning models to form a prediction for the
optimal parameter values and return these. Crucially, there
is a mechanism provided for the client to refuse parameter
values. This functionality is provided for cases where the
predicted parameter values are in some way invalid and do
not lead to a valid program.

The server contains a library of machine learning tools
to perform parameter prediction, interfacing with the pop-
ular datamining software suite Weka1 using its Java Native
Interface. The provided tools include classifiers, regressors,
and a selection of meta-learning algorithms.

OmniTune servers may perform additional feature ex-
traction of explanatory variables supplied by incoming client
requests. The reason for performing feature extraction on
the server as opposed to on the client side is that this al-
lows the results of expensive operations (for example, ana-
lyzing source code of target applications) to be cached for
use across the lifespan of client applications. The contents
of these local caches are periodically and asynchronously
synced with the remote to maintain a global store of lookup
tables for expensive operations.

3.3 Interfaces
Key design elements of OmniTune are the interfaces exposed
by the server and remote components. Figure 4 shows an
example communication pattern between the three compo-
nents of an OmniTune system using these interfaces. In the
example, a server first requests training data from the re-
mote. A client application then performs a training phase
in which it requests a set of parameters for training, evalu-
ates the performance of the parameters, and then submits
a measured value, which the server uses to update the re-
mote. After training, another client program requests a set
of parameters for performance, refuses them, and makes a
new request.

Client-Server An OmniTune server exposes a public in-
terface over D-Bus with four operations. Client applications
invoke these methods to request parameter values, submit
new training observations, and refuse suggested parameters:

• Request(x : feature vector)→ p : param
Given explanatory variables x, request the parameter val-
ues p which are expected to provide maximum perfor-
mance.

• RequestTraining(x : feature vector)→ p : param
Given explanatory variables x, allow the server to select
parameter values p for evaluating their fitness.

1 http://www.cs.waikato.ac.nz/ml/weka/

3 2016/1/6

Training

Refuse(x, p)

Client Server Remote

RequestTraining(x) : p

Pull() : x, p, y

Push(x, p, y)
Request(x) : p

Submit(x, p, y)

Request(x) : p

Figure 4: An example communication pattern between Om-
niTune components, showing an offline training phase.

• Submit(x : feature vector, p : param, y : fitness)
Submit an observed measurement of fitness y for param-
eter values p, given explanatory variables x.

• Refuse(x : feature vector, p : param)
Refuse parameter values p, given a set of explanatory
variables x. Once refused, those parameters are black-
listed and will not be returned by any subsequent calls
to Request() or RequestTraining() for the same ex-
planatory variables x.

Server-Remote The role of the remote is to provide book-
keeping of training data for machine learning. Remotes allow
shared access to data from multiple servers using a transac-
tional communication pattern, supported by two methods:
• Push(x : feature vectors,p : params,y : fitnesses)

Asynchronously submit training data as three lists: ex-
planatory variables x, parameter values p, and observed
outcomes y.

• Pull()→ (x : feature vectors,p : params,y : fitnesses)
Request training data as three lists: explanatory vari-
ables x, parameter values p, and observed outcomes y.

3.4 Extensibility
To extend OmniTune to target an optimization parameter,
a developer extends the server class to implement response
handlers for the four public interface operations, and then
inserts client code into the target application to call these
operations. The implementation of these response handlers
and invoking client code determines the type of autotuning
methods supported. Figure 5 shows the flow diagram for an
example OmniTune implementation. The call to Request-
Training() is matched with a response call of Submit(),
showing the client recording a training observation. In the
next Section, we will detail the steps required to apply Om-
niTune to SkelCL.

4. Integration of OmniTune with SkelCL
In this section we demonstrate the practicality of OmniTune
by integrating the framework into an established algorithmic
skeleton library. Introduced in [4], SkelCL allows users to
easily harness the power of GPUs and CPUs for data parallel
computing, offering a set of OpenCL implementations of
data parallel skeletons in an object oriented C++ library.

The goal of SkelCL is to enable the transition towards
higher-level programming of GPUs, without requiring users
to be intimately knowledgeable of the concepts unique to
OpenCL programming, such as the memory or execution
model. SkelCL has been shown to reduce programming effort

Request
parameters

Training?

Training
Data

Feature
Extraction

User
program

Execute with
parameters

Output DataTraining engine

Feature
Caches

Feature
extractor

Training?

Add new
observation

Yes

No

Yes

Autotuning
engine

Figure 5: Predicting parameter values and collecting training
data with OmniTune.

for developing real applications through the use of robust
pattern implementations and automated memory manage-
ment. Skeletons are parameterised with user functions which
are compiled into OpenCL kernels for execution on device
hardware. SkelCL supports operations on one or two dimen-
sional arrays of data, with the Vector and Matrix container
types transparently handling lazy transfers between host
and device memory, and supporting partitioning for multi-
GPU execution. SkelCL is freely available and distributed
under dual GPL and academic licenses2.

4.1 The Stencil Skeleton
Stencils are patterns of computation which operate on uni-
form grids of data, where the value of each grid element
(cell) is updated based on its current value and the value of
one or more neighboring elements, called the border region.
Figure 6 shows the use of a stencil to apply a Gaussian blur
to an image. SkelCL provides a 2D stencil skeleton which
allows users to provide a function which updates a cell’s
value, while SkelCL orchestrates the parallel execution of
this function across all cells [7].

The border region is described by a stencil shape, which
defines an i × j rectangular region around each cell which
is used to update the cell value. Stencil shapes may be
asymmetrical, and are defined in terms of the number of
cells in the border region to the north, east, south, and west
of each cell. Given a function f , a stencil shape S, and an
n×m matrix with elements xij :

Stencil

(
f, S,

[
x11 · · · x1m

...
. . .

...
xn1 · · · xnm

])
→

[
z11 · · · z1m

...
. . .

...
zn1 · · · znm

]
(1)

where:

zij = f

([
xi−Sn,j−Sw · · · xi−Sn,j+Se

...
. . .

...
xi+Ss,j−Sw · · · xi+Ss,j+Se

])
(2)

For border region elements outside the bounds of the matrix,
values are substituted from either a predefined padding
value, or the value of the nearest element within the matrix,
depending on user preference.

2 http://skelcl.uni-muenster.de

4 2016/1/6

A popular usage of Stencil codes is for iterative problem
solving, whereby a stencil operation is repeated over a range
of discrete time steps 0 ≤ t ≤ tmax, and t ∈ N. An iterative
stencil operation g accepts a customizing function f , a
Stencil shape S, and a matrix M with initial values Minit.
The value of an iterative stencil can be defined recursively
as:

g(f, S, M, t) =
{

Stencil (f, S, g(f, S, M, t− 1)) , if t ≥ 1
Minit, otherwise

(3)

Examples of iterative stencils include cellular automata and
partial differential equation solvers.

In the implementation of the SkelCL stencil skeleton,
each element in the matrix is mapped to a unique thread
(known as a work item in OpenCL) which applies the user-
specified function. The work items are then divided into
workgroups for execution on the target hardware. Each
work-item reads the value of its corresponding matrix el-
ement and the surrounding elements defined by the border
region. Since the border regions of neighboring elements
overlap, the value of all elements within a workgroup are
copied into a tile, allocated as a contiguous region of the
fast, but small local memory. As local memory access times
are much faster than that of global device memory, this
greatly reduces the latency of the border region memory
accesses performed by each work item. Changing the size
of workgroups thus affects the amount of local memory re-
quired for each workgroup, and in turn affects the number
of workgroups which may be simultaneously active on the
device. While the user defines the data size and type, the
shape of the border region, and the function being applied
to each element, it is the responsibility of the SkelCL stencil
implementation to select an appropriate workgroup size to
use.

4.2 Optimization Parameters
SkelCL stencil kernels are parameterised by a workgroup
size w, which consists of two integer values to denote the
number of rows and columns in a workgroup. The space of
optimization parameter values is subject to hard constraints,
and these constraints cannot conveniently be statically de-
termined. Contributing factors are architectural limitations,
kernel constraints, and parameters which are refused for
other reasons. Each OpenCL device imposes a maximum
workgroup size which can be statically checked. These are
defined by architectural limitations of how code is mapped
to the underlying execution hardware. At runtime, once an
OpenCL program has been compiled to a kernel, users can
query the maximum workgroup size supported by that par-
ticular kernel dynamically. This value cannot easily be ob-
tained statically as there is no mechanism to determine the
maximum workgroup size for a given source code and device
without first compiling it, which in OpenCL does not occur
until runtime.

Factors which affect a kernel’s maximum workgroup size
include the number of registers required for a kernel, and
the available number of SIMD execution units for each type
of instructions in a kernel. In addition to satisfying the
constraints of the device and kernel, not all points in the
workgroup size optimization space are guaranteed to provide
working programs. A refused parameter is a workgroup size
which satisfies the kernel and architectural constraints, yet
causes a CL_OUT_OF_RESOURCES error to be thrown when
the kernel is enqueued. Note that in many OpenCL imple-
mentations, this error type acts as a generic placeholder and
may not necessarily indicate that the underlying cause of the

Figure 6: Application of a Gaussian blur stencil operation
to an image, with a border region of radius 1. In a Gaussian
blur, pixel values are interpolated with neighboring pixels,
producing a smoothed effect.

error was due to finite resources constraints. We define a le-
gal workgroup size as one which, for a given scenario s (a
combination of program, device, and dataset), satisfies the
architectural and kernel constraints, and is not refused. The
subset of all possible workgroup sizes Wlegal(s) ⊂ W that
are legal for a given scenario s is then:
Wlegal(s) = {w|w ∈W,w < Wmax(s)} −Wrefused(s) (4)

Where Wmax(s) can be determined at runtime prior to
the kernels execution, but the set Wrefused(s) can only be
determined experimentally.

The oracle workgroup size Ω(s) ∈Wlegal(s) of a scenario
s is the w value which provides the lowest mean runtime.
The relative performance p(s, w) of a particular workgroup
against the maximum available performance for that sce-
nario, within the range 0 ≤ p(s, w) ≤ 1, is the ratio of the
runtime of a program with workgroup size w over the or-
acle workgroup size Ω(s). For a given workgroup size, the
average performance p̄(w) across a set of scenarios S can be
found using the geometric mean of performance relative to
the oracle:

p̄(w) =

(∏

s∈S

p(s, w)

)1/|S|

(5)

4.3 Machine Learning
The optimization space presented by the workgroup size of
OpenCL kernels is large, complex, and non-linear. The chal-
lenge is to design a system which, given a set of prior ob-
servations of the empirical performance of stencil codes with
different workgroup sizes, predict workgroup sizes for unseen
stencils which will maximize the performance. Successfully
applying machine learning requires plentiful training data,
the careful selection of explanatory variables, and appropri-
ate machine learning methods. For the purpose of this work
we use a classification approach, in which a classifier auto-
matically correlates patterns between explanatory variables
and the workgroup sizes which provide optimal performance.
The classifier used is the popular J48 Decision Tree [8], cho-
sen due to its low classification cost and ability to efficiently
handle large dimensionality training data.

For each scenario, a total of 102 explanatory variables are
extracted to capture information about the device, program,
and dataset. Device variables encode the device type (e.g.
CPU or GPU, integrated or external, connection bus), prop-
erties about the host (e.g. system memory, maximum clock
frequency), and numerous properties about the execution
device (e.g. number of compute units, local memory size,
global caches). Program variables include instruction den-
sities for each instruction type, the total number of basic

5 2016/1/6

blocks, and the total instruction count. They are extracted
using static instruction count passes over an LLVM IR com-
piled version of the user stencil implementation. Compila-
tion to bitcode is a relatively expensive task, so lookup tables
are used to cache repeated uses of the same stencil codes,
identified by a checksum of the source code. Dataset vari-
ables include the data types (input and output), and dimen-
sions of the input matrix and stencil region.

To collect training data, we run multiple iterations of a
stencil program to enumerate the workgroup size optimiza-
tion space, and use the OpenCL’s Profiling API to record
stencil kernel execution times in the client application, which
are then submitted to the OmniTune server. The Request-
Training(x) server interface returns a workgroup size with
a randomly selected even number of rows and columns that
obeys the maximum size constraints.

A parameterised template substitution engine is used to
generate synthetic stencil applications for gathering perfor-
mance data. Stencils templates are parameterised with a
border region size and complexity, a simple metric to broadly
dictate the number of operations in a given stencil code.

Once the performance of different workgroup sizes for
a scenario is assessed, the set of explanatory variables de-
scribing the scenario is paired with the oracle workgroup
size. This process is repeated for multiple scenarios to cre-
ate training data. A classifier learns from this training data
to make predictions for new sets of explanatory variables, by
predicting a workgroup size from the set of oracle workgroup
sizes of the training data.

This approach presents the problem that after training,
there is no guarantee that the set of workgroup sizes which
may be predicted is within the set of legal workgroup sizes
for future scenarios. This may result in a classifier predicting
a workgroup size which is not legal for a scenario, w 6∈
Wlegal(s), either because it exceeds Wmax(s), or because
the parameter is refused. If this occurs, a nearest neighbor
approach is used to select the workgroup size w which is
expected to be legal and has the lowest Euclidian distance
to the predicted value c. This is achieved by comparing row
(r) and column (c) indices:

w = arg min
w∈Wlegal(s)

√
(cr − wr)2 + (cc − wc)2 (6)

This process of selecting alternative parameters will iterate
until a legal parameter is found.

4.4 Implementation
The OmniTune framework consists of 8987 lines of Python
and MySQL code. A further 976 lines are required for the
SkelCL frontend to implement the server response handlers
and database backend. By design, the client-server model
minimizes the impact of number of modifications that are
required to enable autotuning in client applications. The
only modification required to SkelCL is to replace the hard-
coded values for workgroup size with a subroutine to request
a workgroup size from the OmniTune server over a D-Bus
connection. To use the system, a user must download a copy
of SkelCL modified with the OmniTune functionality, and
start a local OmniTune server instance. A configuration file
is used to determine the domain address and authentication
details of the remote server. On first launch, the OmniTune
server will fetch the latest training data from the remote.

25 30 35 40 45

Runtime (ms)

(a)

51.70 51.75 51.80

Runtime (ms)

(b)

80 100 120 140

Runtime (ms)

(c)

2.0 2.5 3.0 3.5

Runtime (ms)

(d)

100 120 140 160 180

Runtime (ms)

(e)

200 250

Runtime (ms)

(f)

100 150

Runtime (ms)

(g)

100 150 200

Runtime (ms)

(h)

150 200

Runtime (ms)

(i)

Figure 7: Distribution of runtime samples for test cases from
three devices. Each plot contains a 35-bin histogram of 1000
samples, and a fitted kernel density estimate with bandwidth
0.3. The sample mean is shown as a vertical dashed line. The
top row are from the Intel i5-4570, the second row from the
Nvidia GTX 590, and the third row from the AMD Tahiti
7970. In some of the plots, the distribution of runtimes is bi-
or multi-modal, and skewed to the lower end of the runtimes
range.

5. Experimental Setup
This section describes an exhaustive enumeration of the
workgroup size optimization space for 429 combinations of
architecture, program, and dataset. It contains the method-
ology used to collect empirical performance data on which to
base performance comparisons of different workgroup sizes,
and the steps necessary to obtain repeatable results.

A full enumeration of the workgroup size optimization
spaces was performed across synthetically generated bench-
marks and four reference stencil benchmarks: Canny Edge
Detection, Conway’s Game of Life, Heat Equation, and
Gaussian Blur [4]. Performance data was collected from 7
experimental platforms, comprising 4 GPU devices: AMD
Tahiti 7970, Nvidia GTX 590, Nvidia GTX 690, Nvidia GTX
TITAN; and 3 CPU devices: Intel i5-2430M, Intel i5-4570,
i7-3820. Each platform was unloaded, frequency governors
disabled, and benchmark processes set to the highest prior-
ity available to the task scheduler. Datasets and programs
were stored in an in-memory file system. For each program,
dataset sizes of size 512 × 512, 1024 × 1024, 2048 × 2048,
and 4096× 4096 were used. A minimum of 30 samples were
recorded for each scenario and workgroup size.

Program behavior is validated by comparing program
output against a gold standard output collected by execut-
ing each of the real-world benchmarks programs using the
baseline workgroup size (defined below). The output of real-

6 2016/1/6

200 400 600 800 1000

Number of samples

0%

2%

4%

6%

8%

10%

12%

9
5

%
C

I
/

m
ea

n

Figure 8: Ratio of 95% confidence interval to mean as a func-
tion of sample size. Two dashed lines indicate the confidence
intervals at the minimum (3.7%) and mean (2.5%) sample
size found in the experimental dataset.

world benchmarks with other workgroup sizes is compared
to this gold standard output to test for correct program ex-
ecution.

6. Evaluation
This section evaluates the performance of OmniTune when
tasked with selecting workgroup sizes for SkelCL stencil
codes. The experimental results consist of measured run-
times for a set of test cases, where each test case τi consists
of a scenario, workgroup size pair τi = (si, wi), and is as-
sociated with a sample of observed runtimes from multiple
runs of the program. A total of 269,813 test cases have been
evaluated with an average sample size of 83 (min 33, to-
tal 16,917,118). This represents an exhaustive enumeration
of the workgroup size optimization space for 429 scenarios,
with an average of 629 (max 7,260) unique workgroup sizes
for each scenario.

6.1 Runtime Noise
First we examine the noise present in program runtime
measurements. The complex interaction between processes
competing for the finite resources of a system introduces
many sources for such noise. Figure 7 plots the distributions
of 1000 runtimes recorded for 9 SkelCL stencil kernels, (a)–
(i). The plots show that the distribution of runtimes is not
Gaussian; rather, it is sometimes multimodal, and generally
skewed to the lower end of the runtime range, with a long
“tail” to the right. This fits our intuition that programs
have a hard minimum runtime enforced by the time taken
to execute the instructions of a program, and that noise
introduced to the system extends this runtime. For example,
preempting an OpenCL process on a CPU so that another
process may run may cause the very long tail visible in
Figure 7a.

It is important to ensure a sufficiently large sample size
when performing optimisations based on empirical perfor-
mance data. A recommendation of ≥ 30 samples is common
in the benchmarking literature [9]. Our experimental results
support this recommendation: Figure 8 plots the ratio of
95% confidence interval to the sample mean for different
sample sizes, showing a 50% reduction in confidence inter-
val size when increasing the sample size from 10 to 30. In
this experimental dataset, the ratio of confidence interval to
mean at the smallest sample size (33) is 3.7%, and 2.5% at
the mean sample size (83).

6.2 OpenCL Workgroup Size Optimization Space
We can calculate an upper bound for the performance im-
pact of the workgroup size parameter by comparing the av-
erage runtimes of the best and worst workgroup size for a

0 20 40 60 80 100 120

Number of distinct workgroup sizes

0%

20%

40%

60%

80%

100%

A
cc

u
ra

cy

Figure 9: Accuracy compared to the oracle as a function of
the number of unique workgroup sizes. The greatest accu-
racy that can be achieved using a single statically chosen
workgroup size is 15%. Achieving 50% oracle accuracy re-
quires a minimum of 14 distinct workgroup sizes.

single scenario. Applying this to all scenarios, we find the av-
erage speedup upper bound to be 15.14× (min 1.03×, max
207.72×). This demonstrates the importance of tuning sten-
cil workgroup sizes — if chosen incorrectly, the runtime of
stencil programs can be extended by up to 207.72×. Note
that for 5 of the scenarios, the speedup of the best over worst
workgroup sizes is less than 5%. For these scenarios, there
is little benefit to autotuning; however, this represents only
1.1% of the tested scenarios. For 50% of the scenarios, the
speedup of the best over worst workgroup sizes is greater
than 6.19×.

For the purposes of evaluating autotuning, we use three
baselines to compare program runtimes against. The relative
performance of a workgroup size for a particular scenario is
compared against runtimes for each of three parameters:
• Oracle — The oracle workgroup size is the workgroup

size which provided the lowest mean runtime for a given
scenario. Speedup relative to the oracle is in the range
0 ≤ x ≤ 1, so this can be referred to as performance.

• Baseline — The baseline parameter is the workgroup size
which provides the best overall performance while being
legal for all scenarios. Such a baseline value represents the
best possible performance which can be achieved using
a single, statically chosen workgroup size. By defining
Wsafe ∈ W as the intersection of legal workgroup sizes,
the baseline w̄ can be found using:

Wsafe = ∩{Wlegal(s)|s ∈ S} (7)
w̄ = arg max

w∈Wsafe

p̄(w) (8)

For our experimental data, we find this value to be
w(4×4).

• Human expert — In the original implementation of the
SkelCL stencil skeleton [7], Steuwer et al. selected a
workgroup size of w(32×4), based on an evaluation of 4
stencil programs on a Tesla S1070 system.

Across the 429 scenarios tested, there are 135 unique ora-
cle workgroup sizes. This demonstrates the difficulty in at-
tempting to statically tune for optimal parameter values,
since 31.5% of scenarios have different oracle workgroup
sizes. Figure 9 shows that a minimum of 14 distinct work-
group sizes are needed to achieve just 50% of the oracle
accuracy, although it is important to make the distinction
that oracle accuracy and performance are not equivalent.

We find that the human expert selected workgroup size is
invalid for 2.6% of scenarios, as it is refused by 11 test cases.
By device, these are: 3 on the GTX 690, 6 on the i5-2430M,

7 2016/1/6

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Workgroup size (as a % of Wmax(s))

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

a
n

ce

(a)

10% 20% 30% 40% 50%

Workgroup columns (as a % of Wmax(s))

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

a
n

ce

(b)

10% 20% 30% 40% 50%

Workgroup rows (as a % of Wmax(s))

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

a
n

ce

(c)

Figure 10: Comparing performance of workgroup sizes rela-
tive to the oracle as a function of: (a) maximum legal size,
(b) number of columns, and (c) number of rows. Each work-
group size is normalized to the maximum allowed for that
scenario, Wmax(s). There is no clear correlation between
workgroup size and performance.

and 2 on the i5-4570. For the purpose of comparing per-
formance against human experts, we will ignore these test
cases, but it demonstrates the utility of autotuning not just
for maximizing performance, but ensuring program reliabil-
ity. For the scenarios where the human expert workgroup
size is legal, it achieves an impressive geometric mean of
79.2% of the oracle performance. The average speedup of
oracle workgroup sizes over the workgroup size selected by
a human expert is 1.37× (min 1.0×, max 5.17×).

The utility of the baseline workgroup size is that it rep-
resents the best performance that can be achieved through
static tuning. The baseline workgroup size achieves only 24%
of the maximum performance. Figures 10 and 11 show box
plots for the performance of all workgroup sizes using differ-
ent groupings: ratio of maximum workgroup size, kernel, de-
vice, and dataset. The plots show the median performance,
interquartile range, and outliers. What is evident is both the
large range of workgroup size performances (i.e. the high
performance upper bounds), and the lack of obvious corre-
lations between any of the groupings and performance.

6.3 Autotuning Workgroup Sizes
To evaluate the performance of machine learning-enabled
autotuning of SkelCL stencils, we partition the experimental
data into training and test sets. The training set is used to
build the machine learning model. The predicted workgroup
size for each entry in the test set is then used to evaluate

sy
n

th
et

ic

g
a

u
ss

ia
n

so
b

el

n
m

s

th
re

sh
o

ld

g
o

l

h
e

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

a
n

ce

(a)

In
te

l
i5

-4
5

7
0

In
te

l
i5

-2
4

3
0

M

In
te

l
i7

-3
8

2
0

N
vi

d
ia

G
T

X
6

9
0

A
M

D
T

a
h

it
i

7
9

7
0

N
vi

d
ia

G
T

X
T

IT
A

N

N
vi

d
ia

G
T

X
5

9
0

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

a
n

ce

(b)

1
0

2
4

.1
0

2
4

.fl
o

a
t.

fl
o

a
t

2
0

4
8

.2
0

4
8

.fl
o

a
t.

fl
o

a
t

4
0

9
6

.4
0

9
6

.fl
o

a
t.

fl
o

a
t

4
0

9
6

.4
0

9
6

.i
n

t.
in

t

5
1

2
.5

1
2

.fl
o

a
t.

fl
o

a
t

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

a
n

ce

(c)

Figure 11: Performance relative to the oracle of workgroup
sizes across all test cases, grouped by: (a) kernels, (b) de-
vices, and (c) datasets. The performance impact is not con-
sistent across kernels, devices, or datasets. The Intel i7-3820
has the lowest performance gains from tuning workgroup
size.

the autotuning performance. We use 5 different approaches
to partitioning the test and training data, which each test
different aspects of the system. The first is a k-fold cross
validation, a standard machine learning model validation
technique in which the set of all data is shuffled and then
divided into k equally sized validation sets. Each validation
set is used to test a model trained on the remaining data [8].
In our evaluation we use a value of k = 10. The second
technique is to partition the data such that it consists of data
gathered from synthetic benchmarks, and use data collected
from real-world benchmarks to test. This tests the utility
of training using synthetically generated benchmarks. The
third, forth, and fifth approaches involve creating leave-one-
out training sets for all data grouped by device, kernel, and
dataset, respectively. This tests the ability to successfully
apply prior knowledge about other devices, kernels, and
datasets, to new unseen cases. For example, of the n devices
used to collect performance data, the model is trained on
data from n−1 devices, and tested against data from the nth.
Table 1 summarizes the results of evaluating the autotuner
using each of the different validation techniques.

The autotuner achieves good performance, with average
speedups over the baseline across all validation sets range be-
tween 4.79× and 5.65×. Importantly, the performance when
validating across devices, kernels, and datasets, is compara-
ble to the 10-fold validation. This demonstrates that the
autotuner is capable of learning across these targets. So if

8 2016/1/6

Training Dataset Performance
Speedup
over
Baseline

Speedup
over Human
Expert

10-fold 92% 5.65× 1.26×
Synthetic 92% 4.79× 1.13×
n− 1 Device 85% 5.23× 1.17×
n− 1 Kernel 89% 5.43× 1.21×
n− 1 Dataset 91% 5.63× 1.25×
Average 90% 5.45× 1.22×

Table 1: Performance results using a J48 Decision Tree
across different validation sets. Note that the human ex-
pert selected workgroup size is invalid for 2.6% of test cases,
which we excluded for the purpose of performance compar-
isons against human expert.

the autotuner is deployed to a system for which it has no
prior knowledge, it does not suffer a significant drop in per-
formance. The same is true for an unseen kernel, or dataset
type. This, combined with the distributed datasets provided
by the OmniTune framework, demonstrates the utility of au-
totuning at the skeletal level, allowing machine learning to
successfully learn predictions across unseen programs, ker-
nels, and datasets.

Classification using decision trees is a lightweight process
(they can be implemented using a chain of if/else state-
ments). The measured overhead of autotuning is 2.5ms, of
which only 0.3ms is required for classification using Weka,
although an optimized decision tree implementation could
reduce this further. The remaining 2.2ms is required for fea-
ture extraction and the inter-process round trip between the
OmniTune server and client.

6.4 OmniTune Extensibility
The client-server architecture OmniTune neatly separates
the autotuning logic from the target application. This makes
adjusting the autotuning methodology a simple process. To
demonstrate this, we changed the machine learning algo-
rithm from a J48 decision tree to a Naive Bayes classifier,
and duplicated the evaluation. This required only a single
line of source code in the OmniTune server extension to
be changed. Figure 12 visualizes the differences in autotun-
ing predictions when changing between these two classifiers.
While the average performances of the two classifiers is com-
parable, the distribution of predictions is not. For example,
the Naive Bayes classifier predicted the human expert se-
lected workgroup size of w(32×4) more frequently than it was
optimal, while the decision tree predicted it less frequently.
Selection of machine learning algorithms has a large impact
on the effectiveness of autotuning, and the OmniTune client-
server design allows for low cost experimenting with different
approaches. In future work we will investigate meta-tuning
techniques for selecting autotuning algorithms.

6.5 Summary
In this section we have explored the performance impact of
the workgroup size optimization space, and the effectiveness
of autotuning using OmniTune to exploit this. By comparing
the relative performance of an average of 629 workgroup
sizes for each of 429 scenarios, the following conclusions can
be drawn:

• The performance gap between the best and workgroup
sizes for a particular combination of hardware, software,
and dataset is up to 207.72×.

20 40 60 80

Columns

0
2

0
4

0
6

0

R
ow

s

J48

(a)

20 40 60 80

Columns

0
2

0
4

0
6

0

R
ow

s

NaiveBayes

(b)

Figure 12: Heatmaps of autotuner predictions for a subset
of the explored optimization space (wc < 80, wr < 80) using
two different classifiers. The shading in each cells indicates
if it is predicted less frequently (blue), ore more frequently
(red) than it is optimal. Color gradients are normalized
across plots.
• Not all workgroup sizes are legal, and the space of legal

workgroup sizes cannot statically be determined. Adap-
tive tuning is required to ensure reliable performance.

• Statically tuning workgroup size fails to extract the po-
tential performance across a range of programs, architec-
tures, and datasets. The best statically chosen workgroup
size achieves only 26% of the optimal performance.

• Workgroup size prediction using a decision tree achieves
an average 90% of the optimal performance.

• Auotuning provides performance portability across pro-
grams, devices, and datasets. The performance of pre-
dicted workgroup sizes for unseen devices is within 8%
of the performance for known devices.

7. Related Work
Early work in autotuning applied iterative search tech-
niques to the space of compiler optimisations [3, 10]. Since
then, machine learning techniques have been successfully
employed to reduce the cost of iterative compilation [11–
13]. However, optimizing GPGPU programs presents dif-
ferent challenges to that of traditional CPU programming.
Ryoo et al. demonstrated speedups of up to 432× for ma-
trix multiplication in CUDA through the appropriate use of
zero-overhead thread scheduling, memory bandwidth, and
thread grouping. The importance of proper exploitation of
local shared memory and synchronization costs is explored
in [15]. In [5], data locality optimisations are automated us-
ing a description of the hardware and a memory-placement-
agnostic compiler. Magni, Dubach, and O’Boyle use a ma-
chine learning model to predict optimal thread coarsening
factors of OpenCL kernels in [16], demonstrating speedups
between 1.11× and 1.33×.

Auotuning transformations for stencil codes are explored
in [17] using an IR to represent stencils and a CUDA code
generator at the backend. However, they do not optimize
for the GPU memory hierarchy, using only global memory.
In [6], Lutz, Fensch, and Cole demonstrate that optimal
swapping strategy for multi-GPU stencils depends on the
size of the grid, the number of partitions, and the connection
mechanism (e.g. PCI express). Autotuning for algorithmic
skeletons is performed using Nearest Neighbor classification
and Principle Component Analysis in [18].

9 2016/1/6

OpenTuner is a general purpose toolkit for autotuning
which uses ensemble search techniques to reduce the cost of
exploring an optimization space, rather than the machine
learning approach taken in this work [19]. Since OpenTuner
does not learn optimization spaces as OmniTune does, per-
formance data is not shared across devices. This means that
the search for performant parameter values must be per-
formed by each new device to be autotuned. Our approach
combines machine learning with distributed training sets so
that new users automatically benefit from the collective tun-
ing experience of other users, which reduces the time to de-
ployment.

A “big data” driven approach to autotuning is presented
in [20]. The authors propose the use of “Collective opti-
mization” to leverage training experience across devices, by
sharing performance data, datasets and additional metadata
about experimental setups. In addition to the mechanism for
sharing training datasets, our system provides the capabili-
ties of performing autotuning at runtime using a lightweight
inter-process communication interface. Additionally, Collec-
tive Mind uses a NoSQL JSON format for storing datasets.
The relational schema used in OmniTune offers greater scal-
ing performance and lower storage overhead.

8. Conclusions
As the trend towards increasingly programmable heteroge-
neous architectures continues, the need for high level, ac-
cessible abstractions to manage such parallelism will con-
tinue to grow. Autotuning proves to be a valuable aid for
achieving these goals, provided that the burden of develop-
ment and collecting performance data is lifted from the user.
The system presented in this paper aims to solve this issue
by providing a generic interface for implementing machine
learning-enabled autotuning. OmniTune is a novel frame-
work for autotuning which has the benefits of a fast, “always-
on” interface for client applications, while being able to syn-
chronize data with global repositories of knowledge which
are built up across devices. To demonstrate the utility of
this framework, we implemented a frontend for predicting
the workgroup size of OpenCL kernels for SkelCL stencil
codes. This optimization space is complex, non linear, and
critical for the performance of stencil kernels. Selecting the
correct workgroup size is difficult — requiring a knowledge
of the kernel, dataset, and underlying architecture. The im-
plemented autotuner achieves 92% of the maximum perfor-
mance, and provides performance portability, even achieving
an average of 85% of the maximum performance when de-
ployed on a device for which it has no prior training data.
By performing autotuning at the skeletal level, the system is
able to exploit underlying similarities between pattern im-
plementations which are not shared in unstructured code.
In future work we will explore methods for collaborative ex-
ploration of optimization spaces in parallel across multiple
cooperating devices, and targeting multiple parameters si-
multaneously.

Acknowledgments
This work was supported by the UK Engineering and Phys-
ical Sciences Research Council under grants EP/L01503X/1
for the University of Edinburgh School of Informatics Cen-
tre for Doctoral Training in Pervasive Parallelism (http://
pervasiveparallelism.inf.ed.ac.uk/), EP/H044752/1
(ALEA), and EP/M015793/1 (DIVIDEND).

References
[1] J Enmyren and CW Kessler. “SkePU: a multi-backend skeleton

programming library for multi-GPU systems”. In: HLPP. ACM,
2010, pp. 5–14.

[2] Ricardo Marques, Hervé Paulino, Fernando Alexandre, and Pe-
dro D. Medeiros. “Algorithmic skeleton framework for the or-
chestration of GPU computations”. In: Euro-Par 2013 Parallel
Processing. Vol. 8097 LNCS. Springer, 2013, pp. 874–885.

[3] T Kisuki, Niels Bohrweg, and Campus De Beaulieu. “A Feasi-
bility Study in Iterative Compilation”. In: High Performance
Computing. Springer, 1999, pp. 131–132.

[4] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. “SkelCL - A
Portable Skeleton Library for High-Level GPU Programming”.
In: IPDPSW. IEEE, May 2011, pp. 1176–1182.

[5] Guoyang Chen and Bo Wu. “PORPLE: An Extensible Op-
timizer for Portable Data Placement on GPU”. In: MICRO.
IEEE, 2014, pp. 88–100.

[6] Thibaut Lutz, Christian Fensch, and Murray Cole. “PARTANS:
An Autotuning Framework for Stencil Computation on Multi-
GPU Systems”. In: TACO 9.4 (2013), p. 59.

[7] Michel Steuwer, Michael Haidl, Stefan Breuer, and Sergei Gor-
latch. “High-level programming of stencil computations on
multi-GPU systems using the SkelCL library”. In: Parallel Pro-
cessing Letters 24.03 (2014), p. 1441005.

[8] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining:
concepts and techniques. Elsevier, 2011.

[9] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statis-
tically Rigorous Java Performance Evaluation”. In: ACM SIG-
PLAN. Vol. 42. 10. New York, NY, USA: ACM, Oct. 2007, p. 57.

[10] F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle,
and E. Rohou. “Iterative compilation in a non-linear optimi-
sation space”. In: Workshop on Profile Directed Feedback-
Compilation, PACT. 1998.

[11] Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Grig-
ori Fursin, Michael FP O’Boyle, John Thomson, Marc Tous-
saint, and Christopher KI Williams. “Using Machine Learning
to Focus Iterative Optimization”. In: CGO. IEEE Computer
Society, 2006, pp. 295–305.

[12] Mark Stephenson, Martin Martin, and Una-may O Reilly. “Meta
Optimization: Improving Compiler Heuristics with Machine
Learning”. In: ACM SIGPLAN Notices 38.5 (2003), pp. 77–
90.

[13] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbig-
niew Chamski, Olivier Temam, Mircea Namolaru, Elad Yom-
Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, Francois Bodin,
Phil Barnard, Elton Ashton, Edwin Bonilla, John Thomson,
Christopher K. I. Williams, and Michael O’Boyle. “Milepost
GCC: Machine Learning Enabled Self-tuning Compiler”. In:
IJPP 39.3 (Jan. 2011), pp. 296–327.

[14] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam
S. Stone, David B. Kirk, and Wen-mei W. Hwu. “Optimization
principles and application performance evaluation of a multi-
threaded GPU using CUDA”. In: PPoPP (2008), p. 73.

[15] Victor W. Lee, Per Hammarlund, Ronak Singhal, Pradeep
Dubey, Changkyu Kim, Jatin Chhugani, Michael Deisher, Dae-
hyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail
Smelyanskiy, and Srinivas Chennupaty. “Debunking the 100X
GPU vs. CPU myth”. In: ACM SIGARCH Computer Archi-
tecture News 38 (2010), p. 451.

[16] Alberto Magni, Christophe Dubach, and Michael O’Boyle. “Au-
tomatic optimization of thread-coarsening for graphics proces-
sors”. In: PACT. 2014, pp. 455–466.

[17] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shall, and Samuel
Williams. “An auto-tuning framework for parallel multicore
stencil computations”. In: IPDPS (2010).

[18] Alexander Collins, Christian Fensch, Hugh Leather, and Murray
Cole. “MaSiF: Machine Learning Guided Auto-tuning of Parallel
Skeletons”. In: HiPC (Dec. 2013), pp. 186–195.

[19] Jason Ansel, Shoaib Kamil, Una-may O Reilly, Saman Amaras-
inghe, Jason Ansel, and Una-may O Reilly. “OpenTuner: An Ex-
tensible Framework for Program Autotuning”. In: PACT. 2013.

[20] Grigori Fursin, Renato Miceli, Anton Lokhmotov, Michael
Gerndt, Marc Baboulin, Allen D Malony, Zbigniew Chamski,
Diego Novillo, and Davide Del Vento. “Collective Mind: To-
wards practical and collaborative auto-tuning”. In: Scientific
Programming 22.4 (2014), pp. 309–329.

10 2016/1/6

Synthesizing Benchmarks for Predictive Modeling

Abstract
Predictive modeling using machine learning is an effec-
tive method for building compiler heuristics, but there
is a shortage of benchmarks. Typical machine learning
experiments outside of the compilation field train over
thousands or millions of examples. In machine learn-
ing for compilers, however, there are typically only a
few dozen common benchmarks available. This limits
the quality of learned models, as they have very sparse
training data for what are often high-dimensional fea-
ture spaces. What is needed is a way to generate an un-
bounded number of training programs that finely cover
the feature space. At the same time the generated pro-
grams must be similar to the types of programs that
human developers actually write, otherwise the learn-
ing will target the wrong parts of the feature space.

We mine open source repositories for program frag-
ments and apply deep learning techniques to automati-
cally construct models for how humans write programs.
We then sample the models to generate an unbounded
number of runnable training programs, covering the fea-
ture space ever more finely. The quality of the programs
is such that even human developers struggle to distin-
guish our generated programs from hand-written code.

We use our generator for OpenCL programs, CLgen,
to automatically synthesize thousands of programs and
show that learning over these improves the performance
of a state of the art predictive model by 1.27×. In addi-
tion, the fine covering of the feature space automatically
exposes weaknesses in the feature design which are in-
visible with the sparse training examples from existing
benchmark suites. Correcting these weaknesses further
increases performance by 4.30×.

Keywords Synthetic program generation, OpenCL,
Benchmarking, Deep Learning, GPUs

1. Introduction
Predictive modeling is a well researched method for
building optimization heuristics that often exceed hu-
man experts and reduces development time [1–9]. Fig-
ure 1 shows the process by which these models are
trained. A set of training programs are identified which
are expected to be representative of the application do-
main. The programs are compiled and executed with

Ad-hoc
Driver

clsmithclsmithDatasets

clsmithclsmithTraining
Programs

Feature
Extractor

clsmithclsmithTraining
Data

Predictive
Model

Parameters

Features

Performance

Figure 1: Training a predictive model.

different parameter values for the target heuristic, to
determine which are the best values for each training
program. Each program is also summarized by a vector
of features which describe the information that is ex-
pected to be important in predicting the best heuristic
parameter values. These training examples of program
features and desired heuristic values are used to create a
machine learning model which, when given the features
from a new, unseen program, can predict good heuristic
values for it.

It is common for the feature vectors to contain dozens
of elements. This means that a large volume of training
data is needed to have an adequate sampling over the
feature space. Without it, the machine learned models
can only capture the coarse characteristics of the heuris-
tic, and new programs which do not lie near to training
points may be wrongly predicted. The accuracy of the
machine learned heuristic is thus limited by the sparsity
of the training points.

There have been efforts to solve this problem using
templates. The essence of the approach is to construct a
probabilistic grammar with embedded semantic actions
that defines a language of possible programs. New pro-
grams may be created by sampling the grammar and,
through setting probabilities on the grammar produc-
tions, the sampling is biased towards producing pro-
grams from one part of the space or another. This tech-
nique is potentially completely general, since a grammar
can theoretically be constructed to match any desired
program domain. However, despite being theoretically
possible, it is not easy to construct grammars which are
both suitably general and also produce programs that
are in any way similar to human written programs. It
has been shown to be successful over a highly restricted
space of stencil benchmarks with little control flow or
program variability [8, 9]. But, it is not clear how much

1 2016/11/22

effort it will take, or even if it is possible for human ex-
perts to define grammars capable of producing human
like programs in more complex domains.

By contrast, our approach does not require an expert
to define what human programs look like. Instead, we
automatically infer the structure and likelihood of pro-
grams over a huge corpus of open source projects. From
this corpus, we learn a probability distribution over
sets of characters seen in human written code. Later,
we sample from this distribution to generate new ran-
dom programs which, because the distribution models
human written code, are indistinguishable from human
code. We can then populate our training data with an
unbounded number of human like programs, covering
the space with any desired granularity, far more finely
than either existing benchmark suites, or even the cor-
pus of open source projects. Our approach is enabled
by two recent developments:

The first is the breakthrough effectiveness of deep
learning for modeling complex structure in natural lan-
guages [10, 11]. As we show, deep learning is capable
not just of learning the macro syntactical and semantic
structure of programs, but also the nuances of how hu-
mans typically write code. It is truly remarkable when
one considers that it is given no prior knowledge of the
syntax or semantics of the language.

The second is the increasing popularity of public and
open platforms for hosting software projects and source
code. This popularity furnishes us with the thousands of
programming examples that are necessary to feed into
the deep learning. These open source examples are not,
sadly, as useful for directly learning the compiler heuris-
tics since they are not presented in a uniform, runnable
manner, nor do they typically have extractable test
data. Preparing each of the thousands of open source
projects to be directly applicable for learning compiler
heuristics would be an insurmountable task. In addi-
tion to our program generator, CLgen, we also provide
an accompanying host driver which generates datasets
for, then executes and profiles synthesized programs.

We make the following contributions:

• We are the first to apply deep learning over source
codes to synthesize compilable, executable bench-
marks.

• A novel tool CLgen for general-purpose benchmark
synthesis using deep learning. CLgen automatically
generates thousands of human like programs for use
in predictive modeling.

• We use CLgen to automatically improve the per-
formance of a state of the art predictive model by
1.27×, and expose limitations in the feature design of
the model which, after correcting, further increases
performance by 4.30×.

R
od

in
ia

N
V

ID
IA

 S
D

K

A
M

D
 S

D
K

P
ar

bo
il

N
A

S

P
ol

yb
en

ch

S
H

O
C

A
d-

ho
c

IS
P

A
S

S

P
lo

yb
en

ch

Lo
ne

st
ar

S
P

E
C

-V
ie

w
pe

rf

M
A

R
S

G
P

G
P

U
si

m

0
1
2
3
4
5
6
7

#.
 b

en
ch

m
ar

ks
 u

se
d

Figure 2: The average number of benchmarks used in
GPGPU research papers, organized by origin. In this
work we use the seven most popular benchmark suites.

2. Motivation
In this section we make the argument for synthetic
benchmarks. We identified frequently used benchmark
suites in a survey of 25 research papers in the field of
GPGPU performance tuning from top tier conferences
between 2013–2016: CGO, HiPC, PACT, and PPoPP.
We found the average number of benchmarks used in a
paper to be 17, and that a small pool of benchmarks
suites account for the majority of results, shown in Fig-
ure 2. We selected the 7 most frequently used bench-
mark suites (used in 92% of results), and evaluated the
performance of the state of the art Grewe et al. [12] pre-
dictive model across each. The model predicts whether
running a given OpenCL kernel on the GPU gives bet-
ter performance than on the CPU. We describe the full
experimental methodology in Section 7.

Table 1 summarizes our results. The performance of a
model trained on one benchmark suite and used to pre-
dict the optimal mapping for another suites is generally
very poor. The benchmark suite which provides the best
results, NVIDIA SDK, achieves on average only 49% of
the optimal performance. The worst case is when train-
ing with Parboil to predict the optimal mappings for
Polybench, where the model achieves only 11.5% of the
optimal performance. It is clear that heuristics learned
on one benchmark suite fail to generalize across other
suites.

This problem is caused both by the limited number
of benchmarks contained in each suite, and the distri-
bution of benchmarks within the feature space. Figure 3
shows the feature space of the Parboil benchmark suite,
showing whether, for each benchmark, the model was
able to correctly predict the appropriate optimization.
We used Principle Component Analysis to reduce the
multi-dimensional feature space to aid visualization.

As we see in Figure 3a, there is a dense cluster
of neighboring benchmarks, a smaller cluster of three

2 2016/11/22

AMD NPB NVIDIA Parboil Polybench Rodinia SHOC

AMD - 38.0% 74.5% 76.7% 21.7% 45.8% 35.9%
NPB 22.7% - 45.3% 36.7% 13.4% 16.1% 23.7%

NVIDIA 29.9% 37.9% - 21.8% 78.3% 18.1% 63.2%
Parboil 89.2% 28.2% 28.2% - 41.3% 73.0% 33.8%

Polybench 58.6% 30.8% 45.3% 11.5% - 43.9% 12.1%
Rodinia 39.8% 36.4% 29.7% 36.5% 46.1% - 59.9%

SHOC 42.9% 71.5% 74.1% 41.4% 35.7% 81.0% -

Table 1: Performance relative to the optimal of the Grewe et al. predictive model across different benchmark suites
on an AMD GPU. The columns show the suite used for training; the rows show the suite used for testing.

Principle Component 1 →

Pr
in

ci
pl

e
C

om
po

ne
nt

 2
 → Correct

Incorrect

(a)

Principle Component 1 →

Pr
in

ci
pl

e
C

om
po

ne
nt

 2
 → Correct

Incorrect
Additional

(b)

Figure 3: A two dimensional projection of the Grewe
et al. predictive model over Parboil benchmarks on
an NVIDIA GPU. Two outliers in (a) are incorrectly
predicted due to the lack of nearby observations. The
additional neighboring observations in (b) corrects this.

benchmarks, and two outliers. The lack of neighboring
observations means that the model is unable to learn a
good heuristic for the two outliers, which leads to them
being incorrectly optimized. In Figure 3b, we train the
predictive model with additional benchmarks which are
neighboring in the feature space. The addition of these
observations (and the information they provide about
that part of the feature space) causes the two outliers
to be correctly optimized. We found such outliers in all
of the benchmark suites of Table 1.

These results highlight the significant affect that the
number and distribution of training programs has on
the quality of predictive models. Without good cover-
age of the feature space, any machine learning method-
ology is unlikely to produce high quality heuristics, suit-
able for general use on arbitrary real applications. Our
novel approach, described in the next section, solves
this problem by generating an unbounded number of
programs to cover the feature space at any desired gran-
ularity.

3. Overview of Our Approach
In this paper we present CLgen, a tool for synthesiz-
ing OpenCL benchmarks, and an accompanying host
driver for executing synthetic benchmarks for gather-

ing performance data for predictive modeling. While
we demonstrate our approach using OpenCL, it is lan-
guage agnostic. Our tool CLgen learns the semantics
and structure from over a million lines of hand-written
code from GitHub, and synthesizes programs through a
process of iterative model sampling. We then use a host
driver to execute the synthesized programs to gather
performance data for use in predictive modeling. Fig-
ure 4 provides an overview of the program synthesis
and execution pipeline. Our approach extends the state
of the art by providing a general-purpose solution for
benchmark synthesis, leading to better and more accu-
rate predictive models.

In the course of evaluating our technique against
prior work we discovered that it is also useful for eval-
uating the quality of features. Since we are able to
cover the space so much more finely than the prior
work, which only used standard benchmark suites, we
are able to find multiple programs with identical fea-
ture values but different best heuristic values. This in-
dicates that the features are not sufficiently discrimina-
tive and should be extended with more information to
allow those programs to be separated. We go on to show
that doing this significantly increases the performance
of the learned heuristics. We expect that our technique
will be valuable for feature designers.

4. CLgen: Benchmark Synthesis
CLgen is an undirected, general-purpose program syn-
thesizer for OpenCL. It adopts and augments recent
advanced techniques from deep learning to learn over
massive codebases. In contrast to existing grammar and
template based approaches, CLgen is entirely proba-
bilistic. It learns to program using neural networks
which model the semantics and usage of a huge corpus
of code fragments in the target programming language.
This section describes the assembly of an OpenCL lan-
guage corpus, the application of deep learning over this
corpus, and the process of synthesizing programs.

4.1 An OpenCL Language Corpus
Deep learning requires large datasets [13]. For the pur-
pose of modeling a programming language, this means

3 2016/11/22

CLgen

Host Driver

Language
Corpus

GitHub
Software

Repositories

clsmithclsmithContent Files Rejection
Filter

Search
engine

Source
Normalizer

Training
parameters

Rejection
Filter

LSTM network

Synthesizer

Synthesis
parameters

Argument
Extractor

Benchmark
parameters

clsmithclsmithSynthesized
Benchmarks

Benchmark
Driver

clsmithclsmithSynthesized
Payloads

clsmithclsmithPerformance
Results

Dynamic
Checker

Figure 4: Benchmark synthesis and execution pipeline.

assembling a very large collection of real, hand-written
source codes. We assembled OpenCL codes by min-
ing public repositories on the popular code hosting site
GitHub.

This is itself a challenging task since OpenCL is
an embedded language, meaning device code is often
difficult to untangle and GitHub does not presently
recognize it as a searchable programming language. We
developed a search engine for the GitHub API which
attempts to identify and download standalone OpenCL
files through a process of file scraping and recursive
header inlining. The result is a 2.8 million line dataset of
8078 “content files” which potentially contain OpenCL
code, originating from 793 GitHub repositories.

We prune the raw dataset extracted from GitHub
using a custom toolchain we developed for rejection
filtering and code rewriting, built on LLVM.
Rejection Filter The rejection filter accepts as input
a content file and returns whether or not it contains
compilable, executable OpenCL code. To do this we
attempt to compile the input to NVIDIA PTX bytecode
and perform static analysis to ensure a minimum static
instruction count of three. We discard any inputs which
do not compile or contain fewer than three instructions.

During initial development it became apparent that
isolating the OpenCL device code leads to a higher-
than-expected discard rate (that is, seemingly valid
OpenCL files being rejected). Through analyzing 148k
lines of compilation errors, we discovered a large number
of failures caused by undeclared identifiers — a result
of isolating device code — 50% of undeclared identifier
errors in the GitHub dataset were caused by only 60

1 /∗ Enable OpenCL f e a t u r e s ∗/
2 #define c l_c l ang_s to rage_c l a s s_spec i f i e r s
3 #define cl_khr_fp64
4 #include <c l c / c l c . h>
5
6 /∗ I n f e r r e d types ∗/
7 typedef f l o a t FLOAT_T;
8 typedef unsigned int INDEX_TYPE;

. . . (36 more)
9

10 /∗ I n f e r r e d constants ∗/
11 #define M_PI 3.14025
12 #define WG_SIZE 128

. . . (185 more)

Listing 1: The shim header file, providing inferred
type aliases and constants for OpenCL on GitHub.

unique identifiers. To address this, we developed a shim
header which contains inferred values for common type
definitions (e.g. FLOAT_T), and common constants (e.g.
WGSIZE), shown in Listing 1.

Injecting the shim decreases the discard rate from
40% to 32%, responsible for an additional 88k lines of
code in the final language corpus. The resulting dataset
is 2.0 million lines of compilable OpenCL source code.

Code Rewriting Programming languages have few
of the issues of semantic interpretation present in nat-
ural language, though there remains many sources of
variance at the syntactic level. For example, the pres-
ence and content of comments in code, and the choice of
identifying names given to variables. We consider these
ambiguities to be non-functional variance, and devel-
oped a tool to normalize code of these variances so as
to make the code more amenable to machine learning.
This is a three step process:
1. The source is pre-processed to remove macros, con-

ditional compilation, and source comments.
2. Identifiers are rewritten to have a short but unique

name based on their order of appearance, using the
sequential series {a, b, c, . . . , aa, ab, ac, . . .} for vari-
ables and {A, B, C, . . . , AA, AB, AC, . . .} for func-
tions. This process isolates the syntactic structure
of the code, and unlike prior work [14], our rewrite
method preserves program behavior. Language built-
ins (e.g. get_global_id, asin) are not rewritten.

3. A variant of the Google C++ code style is enforced
to ensure consistent use of braces, parentheses, and
white space.

An example of the code rewriting process is shown in
Figure 5. A side effect of this process is a reduction in
code size, largely due to the removal of comments and
excess white space. The final language corpus contains
1.3 million lines of transformed OpenCL, consisting of
9487 kernel functions. Identifier rewriting reduces the
bag-of-words vocabulary size by 84%.

4 2016/11/22

1 #define DTYPE f l o a t
2 #define ALPHA(a) 3 .5 f ∗ a
3 i n l i n e DTYPE ax (DTYPE x) { return ALPHA(x) ; }
4
5 __kernel void saxpy (/∗ SAXPY k e r n e l ∗/
6 __global DTYPE ∗ input1 ,
7 __global DTYPE ∗ input2 ,
8 const int nelem)
9 {

10 unsigned int idx = get_global_id (0) ;
11 // = ax + y
12 i f (idx < nelem) {
13 input2 [idx] += ax (input1 [idx]) ; }}

(a) Example content file

1 i n l i n e f l o a t A(f l o a t a) {
2 return 3 .5 f ∗ a ;
3 }
4
5 __kernel void B(__global f l o a t ∗ b , __global

↪→ f l o a t ∗ c , const int d) {
6 unsigned int e = get_global_id (0) ;
7
8 i f (e < d) {
9 c [e] += A(b [e]) ;

10 }
11 }

(b) Content file after code rewriting

Figure 5: The code rewriting process, which transforms
code to make it more amenable to language modeling.

4.2 Learning OpenCL
Generating valid, executable program code is an am-
bitious and challenging goal for machine learning. We
employ state of the art deep language modeling tech-
niques to achieve this task.

We use the Long Short-Term Memory (LSTM) archi-
tecture of Recurrent Neural Network [15, 16] to learn
a character-level language model over the corpus of
OpenCL compute kernels. The LSTM network archi-
tecture comprises recurrent layers of memory cells, each
consisting of an input, output, and forget gate [17], and
an output layer providing normalized probability values
from a 1-of-K coded vocabulary.

We use a 3-layer LSTM network with 2048 nodes per
layer. We train this 17-million parameter model using
Stochastic Gradient Descent for 50 epochs, using an
initial learning rate of 0.002, decaying by a factor of
one half every 5 epochs. Training took three weeks on
a single machine using an NVIDIA GTX Titan, with
a final model size of 648MB. Training the network is
a one-off cost, and can be parallelized across devices.
The trained network can be deployed to lower-compute
machines for use.

4.3 Synthesizing OpenCL
We synthesize OpenCL compute kernels by iteratively
sampling the learned language model. We implemented

two modes for model sampling: the first involves pro-
viding an argument specification, stating the data types
and modifiers of all kernel arguments. When an argu-
ment specification is provided, the model synthesizes
kernels matching this signature. In the second sampling
mode this argument specification is omitted, allowing
the model to synthesize compute kernels of arbitrary
signatures, dictated by the distribution of argument
types within the language corpus.

In either mode we generate a seed text, and sam-
ple the model, character by character, until the end
of the compute kernel is reached, or until a predeter-
mined maximum number of characters is reached. The
same rejection filter described in Section 4.1 then either
accepts or rejects the sample as a candidate synthetic
benchmark. Listing 6 shows three examples of unique
compute kernels generated in this manner from an ar-
gument specification of three single-precision floating-
point arrays and a read-only signed integer. We evaluate
the quality of synthesized code in Section 6.

5. Benchmark Execution
We developed a host driver to gather performance data
from synthesized CLgen code. The driver accepts as
input an OpenCL kernel, generates payloads of user-
configurable sizes, and executes the kernel using the
generated payloads, providing dynamic checking of ker-
nel behavior.

5.1 Generating Payloads
A payload encapsulates all of the arguments of an
OpenCL compute kernel. After parsing the input kernel
to derive argument types, a rule-based approach is used
to generate synthetic payloads. For a given global size
Sg: host buffers of Sg elements are allocated and popu-
lated with random values for global pointer arguments,
device-only buffers of Sg elements are allocated for lo-
cal pointer arguments, integral arguments are given the
value Sg, and all other scalar arguments are given ran-
dom values. Host to device data transfers are enqueued
for all non-write-only global buffers, and all non-read-
only global buffers are transferred back to the host after
kernel execution.

5.2 Dynamic Checker
For the purpose of performance benchmarking we are
not interested in the correctness of computed values,
but we define a class of programs as performing useful
work if they predictably compute some result. We de-
vised a low-overhead runtime behavior check to validate
that a synthesized program does useful work based on
the outcome of four executions of a tested program:

5 2016/11/22

1 __kernel void A(__global f l o a t ∗ a ,
2 __global f l o a t ∗ b ,
3 __global f l o a t ∗ c ,
4 const int d) {
5 int e = get_global_id (0) ;
6 f l o a t f = 0 . 0 ;
7 for (int g = 0 ; g < d ; g++) {
8 c [g] = 0 .0 f ;
9 }

10 b a r r i e r (1) ;
11
12 a [get_global_id (0)] = 2∗b [get_global_id (0)] ;
13 }

(a) Vector operation with branching and synchronization.

1 __kernel void A(__global f l o a t ∗ a ,
2 __global f l o a t ∗ b ,
3 __global f l o a t ∗ c ,
4 const int d) {
5 int e = get_global_id (0) ;
6 i f (e >= d) {
7 return ;
8 }
9 c [e] = a [e] + b [e] + 2 ∗ a [e] + b [e] + 4 ;

10 }

(b) Zip operation which computes ci = 3ai + 2bi + 4.

1 __kernel void A(__global f l o a t ∗ a ,
2 __global f l o a t ∗ b ,
3 __global f l o a t ∗ c ,
4 const int d) {
5 unsigned int e = get_global_id (0) ;
6 f loat16 f = (f loat16) (0 . 0) ;
7 for (unsigned int g = 0 ; g < d ; g++) {
8 f loat16 h = a [g] ;
9 f . s0 += h . s0 ;

10 f . s1 += h . s1 ;
11 f . s2 += h . s2 ;
12 f . s3 += h . s3 ;
13 f . s4 += h . s4 ;
14 f . s5 += h . s5 ;
15 f . s6 += h . s6 ;
16 f . s7 += h . s7 ;
17 f . s8 += h . s8 ;
18 f . s9 += h . s9 ;
19 f . sA += h . sA ;
20 f . sB += h . sB ;
21 f . sC += h . sC ;
22 f . sD += h . sD ;
23 f . sE += h . sE ;
24 f . sF += h . sF ;
25 }
26 b [e] = f . s0 + f . s1 + f . s2 + f . s3 + f . s4 +

↪→ f . s5 + f . s6 + f . s7 + f . s8 + f . s9 +
↪→ f . sA + f . sB + f . sC + f . sD + f . sE +
↪→ f . sF ;

27 }

(c) Partial reduction over reinterpreted vector type.

Figure 6: Compute kernels synthesized with CLgen. All
three kernel were synthesized from the same argument
specification: three single-precision floating-point arrays
and a read-only signed integer.

1. Create 4 equal size payloads A1in, B1in, A2in, B2in,
subject to restrictions: A1in = A2in, B1in = B2in,
A1in 6= B1in.

2. Execute kernel k 4 times: k(A1in)→ A1out, k(B1in)→
B1out, k(A2in)→ A2out, k(B2in)→ B2out.

3. Assert:
• A1out 6= A1in and B1out 6= B1in, else k has no

output (for these inputs).
• A1out 6= B1out and A2out 6= B2out, else k is input

insensitive t (for these inputs).
• A1out = A2out and B1out = B2out, else k is non-

deterministic.
Equality checks for floating point values are performed
with an appropriate epsilon to accommodate rounding
errors, and a timeout threshold is also used to catch ker-
nels which are non-terminating. Our method is based
on random differential testing [18], though we empha-
size that this is not a general purpose approach and
is tailored specifically for our use case. For example,
we anticipate a false positive rate for kernels with sub-
tle sources of non-determinism which more thorough
methods may expose [19–21], however we deemed such
methods unnecessary for our purpose of performance
modeling.

6. Evaluation of Synthetic Programs
In this section we evaluate the quality of programs syn-
thesized by CLgen by their likeness to hand-written
code, and discuss limitations of the synthesis and ex-
ecution pipeline.

6.1 Likeness to hand-written code
Judging whether a source code was written by a human
is a challenging task for a machine, so we adopt a
methodology from machine learning research based on
the Turing Test [22–24]. We reason that if the output
of CLgen is human like code, then a human judge will
be unable to distinguish it from hand-written code.

We devised a double blind test in which 15 volun-
teer OpenCL developers from industry and academia
were shown 10 OpenCL kernels each. Participants were
tasked with judging whether, for each kernel, they be-
lieved it to have been written by hand or by machine.
Kernels were randomly selected for each participant
from two equal sized pools of synthetically generated
and hand-written code from GitHub1. The participants
were divided into two groups, with 10 of them receiving
code generated by CLgen, and 5 of them acting as a con-
trol group, receiving code generated by CLSmith [25],
a program generator for differential testing.

1An online version of this test is available at
[URL redacted for double-blind review]

6 2016/11/22

Raw Code Features

comp static #. compute operations
mem static #. accesses to global memory
localmem static #. accesses to local memory
coalesced static #. coalesced memory accesses
transfer dynamic size of data transfers
wgsize dynamic #. work-items per kernel

(a) Individual code features

Combined Code Features

F1: transfer/(comp+mem) commun.-computation ratio
F2: coalesced/mem % coalesced memory accesses
F3: (localmem/mem)×wgsize ratio local to global mem accesses

× #. work-items
F4: comp/mem computation-mem ratio

(b) Combinations of raw features

Table 2: Grewe et al. model features.

We scored each participant’s answers, finding the
average score of the control group to be 96% (stdev.
9%), an unsurprising outcome as generated programs
for testing have multiple “tells”, for example, their only
input is a single ulong pointer. With CLgen synthesized
programs, the average score was 52% (stdev. 17%). This
demonstrates that CLgen code is indistinguishable from
hand-written programs, with human judges scoring no
better than random chance.

6.2 Limitations
Our new approach enables the synthesis of more human-
like programs than current state of the art program gen-
erators, and without the expert guidance required by
template based generators, but it has limitations. Cur-
rently we only run single-kernel benchmarks, and our
method of seeding the language models with the start
of a function means that we cannot support user defined
types, or calls to user-defined functions. The first limi-
tation will be overcome by extending the host driver to
explore multi-kernel schedules and interleaving of ker-
nel executions. The second limitation can be addressed
through recursive program synthesis, whereby a call to
a user-defined function or type will trigger candidate
functions and types to be synthesized.

7. Experimental Methodology
7.1 Experimental Setup
Predictive Model We reproduce the predictive model
from Grewe, Wang, and O’Boyle [4, 12]. The predictive
model is used to determine the optimal mapping of a
given OpenCL kernel to either a GPU or CPU. It uses
supervised learning to construct a decision tree with
a combination of static and dynamic kernel features
extracted from source code and the OpenCL runtime,
detailed in Table 2b.

Version #. benchmarks #. kernels

NPB (SNU [27]) 1.0.3 7 114
Rodinia [28] 3.1 14 31
NVIDIA SDK 4.2 6 12
AMD SDK 3.0 12 16
Parboil [29] 0.2 6 8
PolyBench [30] 1.0 14 27
SHOC [31] 1.1.5 12 48
Total - 71 256

Table 3: List of benchmarks.

Intel CPU AMD GPU NVIDIA GPU

Model Core i7-3820 Tahiti 7970 GTX 970
Frequency 3.6 GHz 1000 MHz 1050 MHz
#. Cores 4 2048 1664
Memory 8 GB 3 GB 4 GB
Throughput 105 GFLOPS 3.79 TFLOPS 3.90 TFLOPS
Driver AMD 1526.3 AMD 1526.3 NVIDIA 361.42
Compiler GCC 4.7.2 GCC 4.7.2 GCC 5.4.0

Table 4: Experimental platforms.

Benchmarks As in [12], we test our model on the
NAS Parallel Benchmarks (NPB) [26]. We use the
hand-optimized OpenCL implementation of Seo, Jo,
and Lee [27]. In [12] the authors augment the training
set of the predictive model with 47 additional kernels
taken from 4 GPGPU benchmark suites. To more fully
sample the program space, we use a much larger col-
lection of 142 programs, summarized in Table 3. These
additional programs are taken from all 7 of the most fre-
quently used benchmark suites identified in Section 2.
We synthesized 1,000 kernels with CLgen to use as ad-
ditional benchmarks.

Platforms We evaluate our approach on two 64-bit
CPU-GPU systems, detailed in Table 4. One system
has an AMD GPU and uses OpenSUSE 12.3; the other
is equipped with an NVIDIA GPU and uses Ubuntu
16.04. Both platforms were unloaded.

Datasets The NPB and Parboil benchmark suites
are packaged with multiple datasets. We use all of the
packaged datasets (5 per program in NPB, 1-4 per
program in Parboil). For all other benchmarks, the
default datasets are used. We configured the CLgen host
driver to synthesize payloads between 128B-130MB,
approximating that of the dataset sizes found in the
benchmark programs.

7.2 Methodology
We replicated the methodology of [12]. Each experiment
is repeated five times and the average execution time
is recorded. The execution time includes both device
compute time and the data transfer overheads.

We use leave-one-out cross-validatation to evaluate
predictive models. For each benchmark, a model is
trained on data from all other benchmarks and used

7 2016/11/22

1 __kernel void A(__global f l o a t ∗ a ,
2 __global f l o a t ∗ b ,
3 __global f l o a t ∗ c ,
4 const int d) {
5 int e = get_global_id (0) ;
6 i f (e < 4 && e < c) {
7 c [e] = a [e] + b [e] ;
8 a [e] = b [e] + 1 ;
9 }

10 }

Listing 2: Using the Grewe et al. features, this
CLgen program is indistinguishable from AMD’s
Fast Walsh–Hadamard transform benchmark, but
has very different runtime behavior. The addition
of a branching feature fixes this.

to predict the mapping for each kernel and dataset
in the excluded program. We repeat this process with
and without the addition of synthetic benchmarks in
the training data. We do not test model prediction on
synthetic benchmarks.

8. Experimental Results
We evaluate the effectiveness of our approach on two
heterogeneous systems. We first compare the perfor-
mance of a state of the art predictive model [12] with
and without the addition of synthetic benchmarks, then
show how the synthetic benchmarks expose weaknesses
in the model’s design and how these can be addressed to
develop a better model. Finally we compare the ability
of CLgen to explore the program feature space against
a state of the art program generator [25].

8.1 Performance Evaluation
Figure 7 shows speedups of the Grewe et al. predic-
tive model over the NAS Parallel Benchmark suite with
and without the addition of synthesized benchmarks
for training. Speedups are calculated relative to the
best single-device mapping for each experimental plat-
form, which is CPU-only for AMD and GPU-only for
NVIDIA. The fine grained coverage of the feature space
which synthetic benchmarks provide improves perfor-
mance dramatically for the NAS benchmarks. Across
both systems, we achieve an average speedup of 2.42×
with the addition of synthetic benchmarks, with predic-
tion improvements over the baseline for 62.5% of bench-
marks on AMD and 53.1% on NVIDIA.

The strongest performance improvements are on
NVIDIA with the FT benchmark, a benchmark which
suffers greatly under a single-device mapping. How-
ever, the performance on AMD for the same bench-
mark slightly degrades after adding the synthetic bench-
marks, which we address in the next section.

8.2 Extending the Predictive Model
Feature designers are bound to select as features only
properties which are significant for the sparse bench-
marks they test on, which can limit a model’s ability
to generalize over a wider range of programs. We found
this to be the case with the Grewe et al. model. The
addition of automatically generated programs exposed
two distinct cases where the model failed to generalize
as a result of overspecializing to the NPB suite.

The first case is that F3 is sparse on many programs.
This a result of the NPB implementation’s heavy ex-
ploitation of local memory buffers and the method by
which they combined features (we speculate this was a
necessary dimensionality reduction in the presence of
sparse training programs). To counter this we extended
the model to use the raw features in addition to the
combined features.

The second case is that some of our generated pro-
grams had identical feature values as in the benchmark
set, but had different behavior (i.e. optimal mappings).
Listing 2 shows one example of a CLgen benchmark
which is indistinguishable in the feature space to one the
of existing benchmarks — the Fast Walsh-Hadamard
transform — but with different behavior. We found this
to be caused by the lack of discriminatory features for
branching, since the NPB programs are implemented
in a manner which aggressively minimized branching.
To counter this we extended the predictive model with
an additional feature with a static count of branching
operations in a kernel.

Figure 8 shows speedups of our extended model
across all seven of the benchmark suites used in Sec-
tion 2. Model performance, even on this tenfold increase
of benchmarks, is good. There are three benchmarks on
which the model performs poorly: MatrixMul, cutcp,
and pathfinder. Each of those programs make heavy
use of loops, which we believe the static code features
of the model fail to capture. This could be addressed
by extracting dynamic instruction counts using profil-
ing, but we considered this beyond the scope of our
work. It is not our goal to perfect the predictive model,
but to show the performance improvements associated
with training on synthetic programs. To this extent, we
are successful, achieving average speedups of 3.56× on
AMD and 5.04× on NVIDIA across a very large test
set.

8.3 Comparison of Source Features
As demonstrated in Section 2, the predictive quality of
a model for a given point in the feature space is im-
proved with the addition of observations from neigh-
boring points. By producing thousands of artificial pro-
grams modeled on the structure real OpenCL programs,
CLgen is able to consistently and automatically gener-

8 2016/11/22

B
T.

A

B
T.

B

B
T.

S

B
T.

W

C
G

.A

C
G

.B

C
G

.C

C
G

.S

C
G

.W

E
P

.A

E
P

.B

E
P

.C

E
P

.W

FT
.A

FT
.B

FT
.S

FT
.W

LU
.A

LU
.B

LU
.C

LU
.S

LU
.W

M
G

.A

M
G

.B

M
G

.C

M
G

.S

M
G

.W

S
P

.A

S
P

.B

S
P

.C

S
P

.S

S
P

.W

A
ve

ra
ge

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

S
pe

ed
up

Grewe et al.
w. CLgen

(a) AMD Tahiti 7970

B
T.

A

B
T.

B

B
T.

S

B
T.

W

C
G

.A

C
G

.B

C
G

.C

C
G

.S

C
G

.W

E
P

.A

E
P

.B

E
P

.C

E
P

.W

FT
.A

FT
.B

FT
.S

FT
.W

LU
.A

LU
.B

LU
.C

LU
.S

LU
.W

M
G

.A

M
G

.B

M
G

.C

M
G

.S

M
G

.W

S
P

.A

S
P

.B

S
P

.C

S
P

.S

S
P

.W

A
ve

ra
ge

1
3
5
7
9

11
13
15
17

S
pe

ed
up

Grewe et al.
w. CLgen

(b) NVIDIA GTX 970

Figure 7: Speedup of programs using Grewe et al. predictive model with and without synthetic benchmarks. The
predictive model outperforms the best device-only mapping by a factor of 1.26× on AMD and 2.50× on NVIDIA.
The addition of synthetic benchmarks improves the performance to 1.57× on AMD and 3.26× on NVIDIA.

ate programs which are close in the feature space to the
benchmarks which we are testing on.

To quantify this effect we use the static code features
of Table 2a, plus the branching feature discussed in the
previous subsection, to measure the number of CLgen
kernels generated with the same feature values as those
of the benchmarks we examined in the previous sub-
sections. We examine only static code features to allow
comparison with the GitHub kernels for which we have
no automated method to execute them and extract run-
time features, and CLSmith generated programs.

Figure 9 plots the number of matches as a function of
the number of kernels. Out of 10,000 unique CLgen ker-
nels, more than a third have static feature values match-
ing those of the benchmarks, providing on average 14
CLgen kernels for each benchmark. This confirms our
original intuition: CLgen kernels, by emulating the way
real humans write OpenCL programs, are concentrated
in the same area of the feature space as real programs.
Moreover, the number of CLgen kernels we generate is
unbounded, allowing us to continually refine the explo-
ration of the feature space, while the number of kernels
available on GitHub is finite. CLSmith rarely produces
code similar to real-world OpenCL programs, with only
0.53% of the generated kernels have matching feature

values with benchmark kernels. We conclude that the
unique contribution of CLgen is its ability to generate
many thousands of programs that are appropriate for
predictive modeling.

9. Related Work
Our work lies at the intersections of a number of ar-
eas: program generation, benchmark characterization,
and language modeling and learning from source code.
There is no existing work which is similar to ours, in
respect to learning from large corpuses of source code
for benchmark generation.

GENESIS [32] is a language for generating synthetic
training programs. Users annotate template programs
with statistical distributions over features, which are in-
stantiated to generate statistically controlled permuta-
tions of templates. Template based approaches provide
domain-specific solutions for a constrained feature and
program space, for example, generating permutations of
Stencil codes [33, 34]. Our approach provides general-
purpose program generation over unknown domains, in
which the statistical distribution of generated programs
is automatically inferred from real world code.

Random program generation is an effective method
for software testing. Grammar-based fuzz testers have

9 2016/11/22

A
M

D
.B

in
o
m

ia
lO

p
ti

o
n

A
M

D
.B

it
o
n
ic

S
o
rt

A
M

D
.B

la
ck

S
ch

o
le

s
A

M
D

.F
a
st

W
a
ls

h
T
ra

n
sf

o
rm

A
M

D
.F

lo
y
d
W

a
rs

h
a
ll

A
M

D
.M

a
tr

ix
M

u
lt

ip
lic

a
ti

o
n

A
M

D
.M

a
tr

ix
T
ra

n
sp

o
se

A
M

D
.P

re
fi
x
S
u
m

A
M

D
.R

e
d
u
ct

io
n

A
M

D
.S

ca
n
La

rg
e
A

rr
a
y
s

A
M

D
.S

im
p
le

C
o
n
v
o
lu

ti
o
n

A
M

D
.S

o
b
e
lF

ilt
e
r

N
P
B

.B
T

N
P
B

.C
G

N
P
B

.E
P

N
P
B

.F
T

N
P
B

.L
U

N
P
B

.M
G

N
P
B

.S
P

N
V

ID
IA

.D
o
tP

ro
d
u
ct

N
V

ID
IA

.F
D

T
D

3
d

N
V

ID
IA

.M
a
tV

e
cM

u
l

N
V

ID
IA

.M
a
tr

ix
M

u
l

N
V

ID
IA

.M
e
rs

e
n
n
e
T
w

is
te

r
N

V
ID

IA
.V

e
ct

o
rA

d
d

P
a
rb

o
il.

b
fs

P
a
rb

o
il.

cu
tc

p
P
a
rb

o
il.

lb
m

P
a
rb

o
il.

sa
d

P
a
rb

o
il.

sp
m

v
P
a
rb

o
il.

st
e
n
ci

l
P
o
ly

b
e
n
ch

.2
D

C
o
n
v
o
lu

ti
o
n

P
o
ly

b
e
n
ch

.2
m

m
P
o
ly

b
e
n
ch

.3
D

C
o
n
v
o
lu

ti
o
n

P
o
ly

b
e
n
ch

.3
m

m
P
o
ly

b
e
n
ch

.a
ta

x
P
o
ly

b
e
n
ch

.b
ic

g
P
o
ly

b
e
n
ch

.c
o
rr

e
la

ti
o
n

P
o
ly

b
e
n
ch

.c
o
v
a
ri

a
n
ce

P
o
ly

b
e
n
ch

.g
e
m

m
P
o
ly

b
e
n
ch

.g
e
su

m
m

v
P
o
ly

b
e
n
ch

.g
ra

m
sc

h
m

id
t

P
o
ly

b
e
n
ch

.m
v
t

P
o
ly

b
e
n
ch

.s
y
r2

k
P
o
ly

b
e
n
ch

.s
y
rk

R
o
d
in

ia
.b

a
ck

p
ro

p
R

o
d
in

ia
.b

fs
R

o
d
in

ia
.c

fd
R

o
d
in

ia
.g

a
u
ss

ia
n

R
o
d
in

ia
.h

o
ts

p
o
t

R
o
d
in

ia
.k

m
e
a
n
s

R
o
d
in

ia
.l
a
v
a
M

D
R

o
d
in

ia
.l
e
u
ko

cy
te

R
o
d
in

ia
.l
u
d

R
o
d
in

ia
.n

n
R

o
d
in

ia
.n

w
R

o
d
in

ia
.p

a
rt

ic
le

fi
lt

e
r

R
o
d
in

ia
.p

a
th

fi
n
d
e
r

R
o
d
in

ia
.s

tr
e
a
m

cl
u
st

e
r

S
H

O
C

.B
FS

S
H

O
C

.F
FT

S
H

O
C

.G
E
M

M
S
H

O
C

.M
D

S
H

O
C

.M
D

5
H

a
sh

S
H

O
C

.R
e
d
u
ct

io
n

S
H

O
C

.S
3

D
S
H

O
C

.S
ca

n
S
H

O
C

.S
o
rt

S
H

O
C

.S
p
m

v
S
H

O
C

.S
te

n
ci

l2
D

S
H

O
C

.T
ri

a
d

A
v
e
ra

g
e

1

3

5

7

9

S
p
e
e
d
u
p
 o

v
e
r

G
re

w
e
 e

t
a
l.

AMD Tahiti 7970

NVIDIA GTX 970

Figure 8: Speedups of predictions using our extended model over Grewe et al. on both experimental platforms.
Synthetic benchmarks and the additional program features outperform the original predictive model by a factor
3.56× on AMD and 5.04× on NVIDIA.

0 2000 4000 6000 8000 10000
#. kernels

0
500

1000
1500
2000
2500
3000
3500

#.
 m

at
ch

es

GitHub
CLSmith
CLgen

Figure 9: The number of kernels from GitHub, CL-
Smith, and CLgen with static code features matching
the benchmarks. CLgen generates kernels that are closer
in the feature space than CLSmith, and can continue to
do so long after we have exhausted the extent of the
GitHub dataset.

been developed for C [35] and OpenCL [25]. A mutation-
based approach for the Java Virtual Machine is demon-
strated in [36]. Goal-directed program generators have
been used for a variety of domains, including generating
linear transforms [37], MapReduce programs [38], and
data structure implementations [39].

Machine learning has been applied to source code to
aid software engineering. Naturalize employs techniques
developed in the natural language processing domain to
model coding conventions [40]. JSNice leverages proba-
bilistic graphical models to predict program properties
such as identifier names for Javascript [41].

There is an increasing interest in mining source code
repositories at large scale [14, 42, 43]. Previous stud-
ies have involved data mining of GitHub to analyze
software engineering practices [44–47], for example code
generation [48], code summarization [49], comment gen-
eration [50], and code completion [51]. However, no
work so far has exploited mined source code for bench-
mark generation. This work is the first to do so.

10. Conclusion
The quality of predictive models is bound by the quan-
tity and quality of programs used for training, yet there
is typically only a few dozen common benchmarks avail-
able for experiments. We present a novel tool which is
the first of it’s kind — an entirely probabilistic pro-
gram generator capable of generating an unbounded
number of human like programs. Our approach applies
deep learning over a huge corpus of publicly available
code from GitHub to automatically infer the semantics
and practical usage of a programming language. Our
tool generates programs which to trained eyes are in-
distinguishable from hand-written code. We tested our
approach using a state of the art predictive model, im-
proving its performance by a factor of 1.27×. We found
that synthetic benchmarks exposed weaknesses in the
feature set which, when corrected, further improved the
performance by 4.30×. In future work we will extend
CLgen to synthesize benchmarks in multiple program-
ming languages, and investigate methods for performing
an automatic directed search of the program space.

10 2016/11/22

Acknowledgments
Our thanks to the volunteers at Codeplay Software Ltd
and the University of Edinburgh for participating in the
qualitative evaluation. This work was supported by the
UK Engineering and Physical Sciences Research Coun-
cil under grants EP/L01503X/1 (CDT in Pervasive
Parallelism), EP/L000055/1 (ALEA), EP/M01567X/1
(SANDeRs), EP/M015823/1, and EP/M015793/1 (DIV-
IDEND). The code and data for this paper is available
at http://chriscummins.cc/cgo17.

References
[1] Zheng Wang and Michael F.P. O’Boyle. “Mapping Parallelism to

Multi-cores: A Machine Learning Based Approach”. In: PPoPP.
2009.

[2] Zheng Wang, Georgios Tournavitis, Björn Franke, and Michael
F. P. O’boyle. “Integrating Profile-driven Parallelism Detection
and Machine-learning-based Mapping”. In: ACM Trans. Archit.
Code Optim. (2014).

[3] Zheng Wang and Michael F.P. O’Boyle. “Partitioning streaming
parallelism for multi-cores: a machine learning based approach”.
In: PACT. 2010.

[4] Haichuan Wang and David Padua. “Optimizing R VM: Alloca-
tion Removal and Path Length Reduction via Interpreter-level
Specialization”. In: CGO. 2014.

[5] P. Micolet, A. Smith, and C. Dubach. “A Machine Learning Ap-
proach to Mapping Streaming Workloads to Dynamic Multicore
Processors”. In: LCTES. 2016.

[6] Y. Wen, Z. Wang, and M. O’Boyle. “Smart Multi-Task Schedul-
ing for OpenCL Programs on CPU/GPU Heterogeneous Plat-
forms”. In: HiPC. IEEE, 2014.

[7] A. Magni, C. Dubach, and M. O’Boyle. “Automatic Optimiza-
tion of Thread-Coarsening for Graphics Processors”. In: PACT.
2014, pp. 455–466.

[8] T. L. Falch and A. C. Elster. “Machine Learning Based Auto-
tuning for Enhanced OpenCL Performance Portability”. In:
IPDPSW. IEEE, 2015.

[9] C. Cummins, P. Petoumenos, M. Steuwer, and H. Leather. “To-
wards Collaborative Performance Tuning of Algorithmic Skele-
tons”. In: HLPGPU. Prague, 2016.

[10] A. Graves. “Generating Sequences with Recurrent Neural Net-
works”. In: arXiv:1308.0850 (2013).

[11] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to Sequence
Learning with Neural Networks”. In: NIPS. 2014.

[12] D. Grewe, Z. Wang, and M. O’Boyle. “Portable Mapping of Data
Parallel Programs to OpenCL for Heterogeneous Systems”. In:
CGO. IEEE, 2013.

[13] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In:
Nature 521.7553 (2015), pp. 436–444.

[14] M. Allamanis and C. Sutton. “Mining Source Code Repositories
at Massive Scale using Language Modeling”. In: MSR. 2013,
pp. 207–216.

[15] M. Sundermeyer, R. Schl, and H. Ney. “LSTM Neural Networks
for Language Modeling”. In: Interspeech. 2012.

[16] Tomas Mikolov. “Recurrent Neural Network based Language
Model”. In: Interspeech. 2010.

[17] A. Graves and J. Schmidhuber. “Framewise Phoneme Classi-
fication with Bidirectional LSTM and Other Neural Network
Architectures”. In: Neural Networks 5.5 (18), pp. 602–610.

[18] W. M. McKeeman. “Differential Testing for Software”. In: DTJ
10.1 (1998), pp. 100–107.

[19] A. Betts, N. Chong, and A. Donaldson. “GPUVerify: A Verifier
for GPU Kernels”. In: OOPSLA. 2012, pp. 113–131.

[20] J. Price and S. Mcintosh-Smith. “Oclgrind: An Extensible
OpenCL Device Simulator”. In: IWOCL. ACM, 2015.

[21] T. Sorensen and A. Donaldson. “Exposing Errors Related to
Weak Memory in GPU Applications”. In: PLDI. 2016.

[22] H. Gao, J. Mao, J. Zhou, Z. Huang, L. Wang, and W. Xu.
“Are You Talking to a Machine? Dataset and Methods for
Multilingual Image Question Answering”. In: arXiv:1505.05612
(2015).

[23] R. Zhang, P. Isola, and A. A. Efros. “Colorful Image Coloriza-
tion”. In: arXiv:1603.08511 (2016).

[24] O. Vinyals, A Toshev, S Bengio, and D Erhan. “Show and Tell:
A Neural Image Caption Generator”. In: CVPR (2015).

[25] C. Lidbury, A. Lascu, N. Chong, and A. Donaldson. “Many-
Core Compiler Fuzzing”. In: PLDI. 2015, pp. 65–76.

[26] D. Bailey et al. “The NAS Parallel Benchmarks”. In: IJHPCA
(1991).

[27] S. Seo, G. Jo, and J. Lee. “Performance Characterization of the
NAS Parallel Benchmarks in OpenCL”. In: IISWC. IEEE, 2011.

[28] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H.
Lee, and K. Skadron. “Rodinia: A Benchmark Suite for Hetero-
geneous Computing”. In: IISWC. IEEE, Oct. 2009.

[29] J. A. Stratton, C. Rodrigues, I. Sung, N. Obeid, L. Chang,
N. Anssari, G. D. Liu, and W. W. Hwu. “Parboil: A Revised
Benchmark Suite for Scientific and Commercial Throughput
Computing”. In: Center for Reliable and High-Performance
Computing (2012).

[30] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J.
Cavazos. “Auto-tuning a High-Level Language Targeted to GPU
Codes”. In: InPar. 2012.

[31] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter. “The Scal-
able HeterOgeneous Computing (SHOC) Benchmark Suite”. In:
GPGPU July 2016 (2010), pp. 63–74.

[32] A. Chiu, J. Garvey, and T. S. Abdelrahman. “Genesis: A Lan-
guage for Generating Synthetic Training Programs for Machine
Learning”. In: CF. ACM, 2015, p. 8.

[33] J. D. Garvey and T. S. Abdelrahman. “Automatic Performance
Tuning of Stencil Computations on GPUs”. In: ICPP (2015),
pp. 300–309.

[34] C. Cummins, P. Petoumenos, M. Steuwer, and H. Leather.
“Autotuning OpenCL Workgroup Size for Stencil Patterns”. In:
ADAPT. Prague, 2016.

[35] X. Yang, Y. Chen, E. Eide, and J. Regehr. “Finding and Un-
derstanding Bugs in C Compilers”. In: PLDI. 2011.

[36] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao. “Coverage-Directed
Differential Testing of JVM Implementations”. In: PLDI. 2016,
pp. 85–99.

[37] Y. Voronenko, F. De Mesmay, and M. Püschel. “Computer
Generation of General Size Linear Transform Libraries”. In:
CGO. IEEE, 2009, pp. 102–113.

[38] C. Smith. “MapReduce Program Synthesis”. In: PLDI. 2016.
[39] C. Loncaric, T. Emina, and M. D. Ernst. “Fast Synthesis of Fast

Collections”. In: PLDI. Santa Barbara, CA, 2016.
[40] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. “Learning

Natural Coding Conventions”. In: FSE. 2014, pp. 281–293.
[41] Veselin Raychev, Martin Vechev, and Andreas Krause. “Predict-

ing Program Properties from “Big Code””. In: POPL. 2015.
[42] M. White, C. Vendome, M. Linares-Vasquez, and D. Poshy-

vanyk. “Toward Deep Learning Software Repositories”. In:
MSR. 2015.

[43] E. Kalliamvakou, L. Singer, G. Gousios, D. M. German, K.
Blincoe, and D. Damian. “The Promises and Perils of Mining
GitHub”. In: MSR. 2009, pp. 1–10.

[44] Y. Wu, J. Kropczynski, P. C. Shih, and J. M. Carroll. “Exploring
the Ecosystem of Software Developers on GitHub and Other
Platforms”. In: CSCW. 2014, pp. 265–268.

[45] E. Guzman, D. Azócar, and Y. Li. “Sentiment Analysis of
Commit Comments in GitHub: an Empirical Study”. In: MSR.
2014, pp. 352–355.

[46] R. Baishakhi, D. Posnett, V. Filkov, and P. Devanbu. “A Large
Scale Study of Programming Languages and Code Quality in
Github”. In: FSE. 2014.

[47] B. Vasilescu, V. Filkov, and A. Serebrenik. “Perceptions of
Diversity on GitHub: A User Survey”. In: Chase (2015).

[48] X. Gu, H. Zhang, D. Zhang, and S. Kim. “Deep API Learning”.
In: arXiv:1605.08535 (2016).

[49] M. Allamanis, H. Peng, and C. Sutton. “A Convolutional At-
tention Network for Extreme Summarization of Source Code”.
In: arXiv:1602.03001 (2016).

[50] E. Wong, J. Yang, and L. Tan. “AutoComment: Mining Ques-
tion and Answer Sites for Automatic Comment Generation”. In:
ASE. IEEE, 2013, pp. 562–567.

[51] V. Raychev, M. Vechev, and E. Yahav. “Code Completion with
Statistical Language Models”. In: PLDI. 2014.

11 2016/11/22

A. Artifact description
A.1 Abstract
Our research artifact consists of interactive Jupyter
notebooks. For your convenience, we provide two meth-
ods of validating our results: an ‘AE’ notebook which
validates the main experiments of the paper, and a com-
prehensive ‘Paper’ notebook which replicates every ex-
periment of the paper, including additional analysis.
The most convenient method to evaluate our results is
to access our pre-configured live server:
http://[redacted]:8888/notebooks/AE.ipynb

using the password [redacted], and to follow the in-
structions contained within.

A.2 Description
A.2.1 Check-list (artifact meta information)
• Run-time environment: A web browser.
• Output: OpenCL code, runtimes, figures and tables

from the paper.
• Experiment workflow: Run (or install locally) Jupyter

notebooks; interact with and observe results.
• Experiment customization: Edit code in Jupyter

notebook; full API and CLI for CLgen.
• Publicly available?: Yes, code and data. See:

http://chriscummins.cc/cgo17/

A.2.2 How delivered
Jupyter notebooks which contain an annotated version
of this paper, interleaved with the code necessary to
replicate results. We provide three options to run the
Jupyter notebooks:
1. Remote access to the notebook running on our pre-

configured experimental platform.
2. Download our pre-packaged VirtualBox image with

Jupyter notebook installed.
3. Install the project locally on your own machine.

A.3 Installation
Access the Jupyter notebooks using one of the three
methods we provide. Once accessed, proceed to Sec-
tion A.4.

A.3.1 Remote Access
The Jupyter notebooks are available at:

http://[redacted]:8888, password [redacted].

A dashboard showing server load is available at:
http://[redacted]:19999

High system load may lead to inconsistent performance
results; this may occur if multiple reviewers are access-
ing the server simultaneously.

A.3.2 Virtual Machine
Copy our pre-configured 5.21 GB VirtualBox image
using:

$ scp cgo@[redacted]:vm.ova ~
Password: [redacted]

Install the virtual machine using VirtualBox’s “Import
Appliance’ command:

The image was prepared using VirtualBox 5.1.8. It has
the following configuration: Ubuntu 16.04, 4 GB RAM,
10 GB hard drive, bridged network adapter with DHCP,
US keyboard layout, GMT timezone.

Start the machine and log in using username and pass-
word cgo. Once at the shell, run launch. This will
start the Jupyter notebook server and print its address.
You can access the notebooks at this address using the
browser of the host device. Please note that the Virtu-
alBox image does not have OpenCL, so new runtimes
cannot be generated.

A.3.3 Local Install
See http://chriscummins.cc/cgo17/ for instructions.
Note that we only support Ubuntu 16.04 or OS X,
and sudo privileges are required to install the necessary
requirements. Other Linux distributions may work but
will require extra steps to install the correct package
versions.

12 2016/11/22

A.4 Experiment workflow
1. Access the Jupyter notebook server using one of the

three options described in Section A.3.
2. From the Jupyter server page, tick the checkbox

next to one of the two notebooks: AE.ipynb for
minimal artifact reproduction or Paper.ipynb for a
comprehensive interactive paper.

3. Click the button “Duplicate”.

4. Click on the name of the newly created copy, e.g.
Paper-Copy1.ipynb or AE-Copy3.ipynb.

5. Repeatedly press the play button (tooltip is “run
cell, select below”) to step through each cell of the
notebook.
OR select “Kernel” > “Restart & Run All” from the
menu to run all of the cells in order.

A.5 Evaluation and expected result
Each code cell within the Jupyter notebook generates
an output. Expected results are described in text cells.

We include both the code necessary to evaluate the
data used in the paper, and the code necessary to gen-
erate and evaluate new data. For example, we include
the large neural network trained on all of the OpenCL
on GitHub (which took 3 weeks to train), along with a
small dataset to train a new one.

A.6 Experiment customization
The experiments are fully customizable. The Jupyter
notebook can be edited “on the fly”. Simply type your
changes into the cells and re-run them. For example, in
Table 1 of the Paper.ipyn notebook we cross-validate
the performance of predictive models on an AMD GPU:

To replicate this experiment using the NVIDIA GPU,
change the first line of the appropriate code cell to read
data = nvidia_benchmarks and re-run the cell:

Note that some of the cells depend on the values of prior
cells and must be executed in sequence.

CLgen has a documented API and command line in-
terface. You can create new corpuses, train new net-
works, sample kernels, etc.

A.7 Notes
For more information about CLgen, visit:

http://chriscummins.cc/clgen/
Please report bugs and issues at:

https://github.com/ChrisCummins/clgen/issues

13 2016/11/22

	Introduction
	Project aim
	Project objectives

	Literature survey
	Deep learning
	Iterative compilation
	Program generation

	Summary of progress
	Research outputs
	Codeplay internship

	Proposal
	Thesis outline
	Work plan

	Conclusion
	Appendix ADAPT Publication
	Appendix HLPGPU Publication
	Appendix CGO Publication

