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Abstract. The rapid transition towards multicore hardware has left application programmers
requiring higher-level abstractions for coping with the complexity of parallel programming. Algo-
rithmic Skeletons provide such abstractions but, without extensive tuning, typically cannot com-
pete with the performance of hand optimised code. This paper proposes developing a dynamic,
“always-on” autotuner for SkelCL, an Algorithmic Skeleton library which enables high-level pro-
gramming of multi-GPU systems. An online machine learning system will be used to create a
feedback loop of constant testing and evaluation of skeleton parameters across the lifespan of
programs. It will use dynamic features extracted from muscle functions and input data to max-
imise runtime performance. Such a system will extend the state of the art by enabling empirical
optimisation without the huge offline training phases associated with iterative compilation.

1 Introduction

Parallelism is increasingly seen as the only viable ap-
proach to maintaining continued performance improve-
ments in a multicore world. Despite this, the adoption of
parallel programming practises has been slow and awk-
ward, due to the prohibitive complexity and low level of
abstractions available to programmers.

Algorithmic Skeletons address this issue by provid-
ing reusable patterns for parallel programming, offering
higher-level abstractions and reducing programmer ef-
fort [1, 2]. Tuning the performance of these Algorithmic
Skeletons requires programmers to either manually set
optimisation parameters based on intuition, or to search
the huge space of possible optimisation parameters by re-
peatedly evaluating different configurations to select the
configuration which gives the best performance.

The aim of this project is to demonstrate that the tun-
ing of optimisation parameters can be successfully per-
formed at runtime without needing offline training. This
will enable self-tuning programs which adapt to their ex-
ecution environment by selecting optimal parameters dy-
namically. Online machine learning will enable the run-
time exploration of the optimisation space while selecting
configurations that maximise performance.

1.1 Hypotheses

This project proposes two hypotheses about the perfor-
mance of Algorithmic Skeletons:

e a dynamic autotuner will select optimisations that
provide improved performance over a baseline Algo-
rithmic Skeleton implementation;

e a dynamic autotuner will provide improved perfor-
mance over a hand-tuned OpenCL implementation
across a range of different inputs, by adapting to
changes in the inputs dynamically.

These hypotheses can be referred to respectively as
the claims specialisation and generalisation. We can in-
fer from these that a dynamic autotuner cannot provide
better performance than an equivalent OpenCL imple-
mentation which has been tuned for a fized input, since
the extra instructions required to implement the dynamic
autotuner present an unavoidable performance overhead.

The reduction of this overhead is one of the greatest chal-
lenges facing the development of dynamic autotuners.

1.2 Contributions

The novelty of my solution is to apply online machine
learning techniques to the problem of optimisation pa-
rameter selection for Algorithmic Skeletons. Contribu-
tions of a successful project will include:

e a first attempt to apply the principles of online ma-
chine learning to the runtime selection of Algorithmic
Skeleton optimisation parameters;

e a dynamic autotuner which specifically targets fea-
tures relevant to multi-GPU parallelism;

e experimental results comparing the performance of
dynamically autotuned SkelCL against hand tuned
OpenCL across multiple benchmarks.

2 Motivation

Consider a recursive merge sort algorithm. The algorithm
takes an input list, and returns a sorted permutation. It
checks the length of the input list to see if it is short
enough to solve directly using a linear sorting method,
or whether it should split it into multiple sub-lists and
sort them recursively before combining the results. This
computational pattern is abstracted by the Divide and
Conquer skeleton, which can be effectively parallelised
by executing each recursion as a new parallel task. The
Divide and Conquer skeleton takes an input of type T;
and returns an output of type T,, and is parameterised
with definitions for four muscle functions:

should_divide : T; — boolean
divide : T;  — [T3]
conquer : Ty — T,
combine : [To] = T,
The degree of a Divide and Conquer skeleton is the
number of sub-problems that the divide function splits a

problem into. For a given degree k, the number of tasks
n grows exponentially with recursion depth d:

n=kk"—1
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On real hardware, the number of available processing
units limits the number of tasks which can be effectively
executed in parallel. Since the Divide and Conquer pat-
tern does not constrain the maximum depth that an al-
gorithm may recurse to, the skeleton author must impose
a maximum “parallelisation depth” to prevent the task
switching costs skeletons which recurse deeply. Recur-
sion above the parallelisation depth causes the creation
of parallel tasks, below this depth, recursion occurs se-
quentially.

The remainder of this section describes experimental
data that consider the effect of varying input conditions
on the optimal parallelisation depth.

2.1 Experimental setup

I implemented a Divide and Conquer skeleton and pa-
rameterised it with muscle functions to implement merge
sort. I parallelised the skeleton using the C++11 Thread
Support Library, and a testbench recorded the mean time
to sort a vector of random unsorted data over 30 itera-
tions. I varied the parallelisation depth over the range 0
(sequential) through 10.

2.2 Results

Figure 1 shows the mean performance speedup of differ-
ent parallelisation depths over sequential execution. Fig-
ure la shows the effect of varying the split size, which
is a property of the should_ divide muscle function that
determines the maximum list size at which recursive sort
should bottom out and insertion sort is used. Figure 1b
shows the effect of varying the size and data type of the
input vector.

We observe that changes in the input and muscle func-
tion definitions can have a significant impact when de-
termining the optimal parallelisation depth parameter.
Since the skeleton author cannot determine the types and
values of inputs a priori, they must resort to picking a
value which they expect to provide best average case per-
formance, or devising a technique which sets this opti-
misation parameter at runtime as a response to different
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inputs. This proposal describes a solution using the latter
approach.

3 Background

Relevant approaches to the problem of optimisation pa-
rameter tuning can be broadly categorised as either of-
fline tuning or dynamic optimisation. This section out-
lines some of the most important works in each category,
followed by an introduction to the SkelCL library.

3.1 Offline tuning

Offline tuning involves selecting the set of parameters that
provides the best performance for a given input based on
some model of performance that has been generated be-
forehand. Performance models can either be predictive,
in that they attempt to characterise performance as a
function of the optimisation parameters and input, or em-
pirical, in that they select optimisation parameters based
on empirical data gathered from prior evaluation of many
different parameter configurations. In both cases, a per-
formance function f(c, p) models the relationship between
a parameter configuration ¢, a program p, and some prof-
itability goal. The purpose of the offline tuning phase is
to select the configuration coptimar Which maximises the
output of the performance model:

Coptimal = arginax f(67 p)
p

The quality of predictive models is limited by the ability
of the prediction function to accurately capture the be-
haviour of a real world system. Given the complexities
of modern architectures and software stacks, such mod-
els have become increasingly hard to develop, although
Yotov et al. demonstrated in [7] that under certain scenar-
ios, the performance of accurately generated hand-tuned
models can approach that of empirical optimisations.
The quality of empirical models is limited by the
amount of training data available to it, and the ability
to interpolate between training data when faced with
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Figure 1: The performance impact of dynamic features on the optimisation parameter “parallelisation
depth”: in la, as a function of split size ns; in 1b, as a function of input type and size. In both cases,
no parallelisation depth value can provide optimal performance for all inputs.
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Figure 2: Two approaches to static autotuning: in 2a, offline autotuning using a separate training
phase, as used in [3-5]; in 2b, online autotuning using procedure multiversioning, as used in [6]. In
offline autotuning, training programs are used to populate the training dataset. In online autotuning,
multiple versions of procedures and compiled and switched between using a procedure dispatcher at

runtime.

new unknown inputs. Offline machine learning tech-
niques have proven popular as an approach to reducing
the number of evaluations of training programs which are
required. In [3], Agakov et al. use Markov Chains to
learn the most profitable areas of the optimisation space
of source to source transformations.

In [4], Fursin et al. present Milepost GCC, a self-
tuning research compiler that selects optimisations based
on static program features. The approach proposed in
this paper differs by performing this search of the opti-
misation space during normal program runs, instead of
requiring costly offline training.

The task of collecting training data for offline auto-
tuners has been effectively distributed in [8, 9]. A remote
server contains a central store of training data which is
retrieved and contributed to by distributed clients; this
allows multiple clients to share the results of optimisa-
tions. The overhead of communicating with a remote
server would be too great to use dynamically, a typical
150ms network round trip time in the critical path of a
program would cause a serious performance degradation.

Collins et al. presented the offline autotuner MaSiF
in [5]. Principle Component Analysis was used to reduce

the search size of the optimisation space for FastFlow and
Intel Thread Building Blocks, two popular Algorithmic
Skeleton libraries. They achieved 89% of the oracle per-
formance by searching 0.05% of the optimisation space.
This paper differs by targeting the feature space of het-
erogeneous parallelism and using online machine learning
instead of offline training.

A system-level overview of offline autotuning is shown
in Figure 2a.

3.2 Dynamic optimisation

Dynamic optimisers improve the performance of pro-
grams by exploring the optimisation space at runtime.
Implementing an effective dynamic optimiser is a chal-
lenging task, as the need to search the optimisation space
must be balanced against the need to provide quality of
service by avoiding suboptimal configurations. In a real
world system, evaluating many suboptimal configurations
will cause a significant slowdown of the program. Thus
a requirement of dynamic optimisers is that convergence
time towards optimal parameters must be minimised.
Dynamo is a dynamic optimiser which performs binary
level transformations of programs using information gath-
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ered from runtime profiling and tracing [10]. While this
provides the ability to respond to dynamic features, it
restricts the range of optimisations that can be applied
to binary transformations such as function inlining, and
cannot offer the performance gains that higher-level pa-
rameter tuning such as setting the size of thread pools
provides.

Fursin et al. negated the cost of dynamic compilation
in [6] by compiling multiple versions of target subroutines
ahead of time. At runtime, execution is switched between
the available versions which are ranked by performance.
Figure 2b shows a system-level overview of this approach.
In practice, this technique massively reduces the size of
the optimisation space which can be searched as it is un-
feasible to insert the thousands of different versions of a
subroutine that are tested using offline tuning. The ap-
proach proposed in this paper enables online searching
of the entire optimisation space by compiling OpenCL
kernels at runtime.

Many existing dynamic optimisation systems do not
store the results of their efforts persistently, allowing the
training data to be lost when the host process terminates.
This approach relies on the assumption that either the
convergence time to reach an optimal set of parameters
is short enough to have negligible cost, or that the run
time of the process is sufficiently long to reach an opti-
mal set of parameters in good time. Neither assumption
can be shown to fit the general case. This has led to the
development of collective compilation techniques, which
involve persistently storing the results of successive opti-
misation runs in a persistent database [11].

In [12], Ansel et al. attempts to capture high-level algo-
rithmic choices using PetaBricks, a language and compiler
which allows programmers to express algorithms that tar-
get specific dynamic features, and to select which algo-
rithm to execute at runtime. This has the disadvantage of
increasing programmer effort by requiring them to imple-
ment multiple versions of an algorithm tailored to dif-
ferent optimisation parameters. A dynamic autotuner
for Algorithmic Skeletons will be able to exploit these
high-level optimisations without increasing programmer
effort, by hiding the complexity of optimisations within
the SkelCL library.

SiblingRivalry [13] is a dynamic optimiser that pro-
vides sustained quality of service by dividing the available
processing units in half. When invoked, two copies of a
target subroutine are executed simultaneously, one using
the current best known configuration, and the other using
a trial configuration which is to be evaluated. If the trial
configuration outperforms the current best configuration
then it replaces it as the new best configuration. This
allows for the low cost evaluation of suboptimal config-
urations, but incurs a large runtime penalty by dividing
the available resources in half.

3.3 SkelCL

Michel Steuwer, a research associate at the Univer-
sity of Edinburgh, developed SkelCL as an approach to
high-level programming for multi-GPU systems [14, 15].
Steuwer, Kegel, and Gorlatch demonstrated an 11x re-
duction in programmer effort compared to equivalent pro-
grams implemented using pure OpenCL, while suffering
only a modest 5% performance overhead [16].

SkelCL comprises a set of parallel container data types
for vectors and matrices, and an automatic distribution

mechanism that performs implicit transfer of these data
structures between the host and device memory. Appli-
cation programmers express computations on these data
structures by parameterising Algorithmic Skeletons with
small sections of OpenCL code. At runtime, SkelCL com-
piles the Algorithmic Skeletons into compute kernels for
execution on GPUs. This makes SkelCL an excellent can-
didate for dynamic autotuning, as it exposes both the op-
timisation space of the OpenCL compiler, and the high-
level tunable parameters provided by the structure of Al-
gorithmic Skeletons.

4 Methodology

The work required to complete this research has been
broadly divided into three stages:

1. Modify SkelCL to enable the runtime configuration
of optimisation parameters and the extraction of dy-
namic features.

2. Evaluate the significance of optimisation parameters
and dynamic features. Use the results of this evalua-
tion to select an online machine learning algorithm for
parameter tuning.

3. Implement a low overhead dynamic autotuner which
uses this online machine learning model to select op-
timisation parameters at runtime.

This section outlines the work required for each stage,
listing some of the possible challenges and approaches to
overcoming them.

4.1 Model features and parameters

In the first stage, I will replace compile-time constant pa-
rameters in the SkelCL library with variable parameters,
and add an API to support dynamically setting these pa-
rameters. This will provide the set of actions that can
be taken based on performance predictions of the ma-
chine learning model. Examples of parameters which can
be set dynamically include the mapping of work items
to threads and the OpenCL compiler configuration. I
will then modify the container types of SkelCL so that
properties of input data structures can be extracted at
runtime. These will provide the input features to the
machine learning model. Examples of dynamic features
include the dimensionality and types of data.

4.2 Online machine learning

Exploratory experiments will then be used to evaluate
the effect of different parameters and features by varying
test stimuli across a range of different inputs and measur-
ing their impact on performance. Statistical methods will
be used to analyse these results and isolate the parame-
ters and features with the greatest performance impact.
Principle Component Analysis can be used to reduce the
dimensionality of this optimisation space by orientating
the space along the directions of greatest variance.

The purpose of this exploratory phase is to identify
the parameters and features which can be used to most
effectively search the optimisation space, and to guide
the choice of an online machine learning algorithm. The
goal of the online machine learning algorithm is to gener-
ate parameter configurations which will provide the best
performance for a given skeleton and input dataset. Ev-
ery time the user invokes a skeleton object, the machine
learning algorithm must:
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Figure 3: The skeleton invocation behaviour of current SkelCL (3a), and with dynamic autotuning
(3b). When invoked, the dynamic features of a skeleton object are extracted and an online machine
learning model recommends optimal parameters. The OpenCL compiler is invoked on this parameterised
skeleton to generate an OpenCL kernel for execution on device. Profiling information is gathered during

execution and added to the training dataset.

1. Predict the parameter configuration which will pro-
vide the best performance based on the features.

2. Compile and execute the skeleton with this configura-
tion.

3. Measure the true performance of the skeleton and use
this result to refine future predictions.

The primary challenge in developing the machine learn-
ing algorithm is to balance the potentially conflicting re-
quirements to:

o offer the best performance configurations to maximise
performance;

e search the large optimisation space to avoid becoming
trapped in local minima;

e build statistical confidence in training data through
repeated invocations of identical configurations.

4.3 Dynamic autotuner implementation

In the final stage, I will implement a dynamic autotuner
which uses the online machine learning algorithm, fea-
tures, and parameters selected in the exploratory phase.
To the best of our knowledge this will be the first at-
tempt to develop a dynamic autotuner using online ma-
chine learning for Algorithmic Skeletons. The goal of the
implementation will be to exploit the advantages of dy-
namic features to provide improved performance over ex-
isting static Algorithmic Skeleton autotuners, and to ex-
ploit the high-level abstractions of Algorithmic Skeletons
to provide improved performance over existing dynamic
optimisers. Figure 3b shows a system-level overview of
dynamically autotuned SkelCL.

A major challenge when implementing online autotun-
ing is to minimise the runtime overhead so that it does
not outweigh the performance gains of the optimisations
themselves. The proposed approach to dynamically au-
totune SkelCL will overcome a significant overhead asso-
ciated with dynamic optimising: that of instrumenting
the code to enable profiling and tracing. Since Algorith-
mic Skeletons coordinate muscle functions, it is possible
to forgo many of the counters required for performance
profiling by making assumptions about the execution fre-
quency of certain code paths given the nature of the skele-
ton. I will place profiling counters by hand at critical
points in the SkelCL library to minimise the frequency of
counter increments.

The convergence time of autotuning can be improved
by using a central database to store optimisation results.
This provides two advantages: first, it allows the results
of autotuning to be used by future program runs; second,
it allows the result of autotuning to be shared across any
program which uses the SkelCL library. The challenge of
implementing this persistent data storage is that results
must be stored efficiently and compactly to allow for in-
definite scaling of the dataset as future results are added.
Increasing the size of the training dataset also increases
the time required to compute new results, and there is
additional latencies associated with reading and writing
data to and from disk.

5 Evaluation

My hypothesis is that the performance of Algorithmic
Skeletons can be improved using dynamic autotuning.
This hypothesis will be supported or rejected by empirical
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evidence collected from an evaluation of the implemented
prototype. I will use experimental evidence and standard
empirical methods to evaluate the performance of SkelCL
across a range of representative benchmarks.

I will compare experimental performance results
against:

e a baseline implementation provided by an unmodi-
fied SkelCL implementation. This will compare the
speedup of the autotuned version over the baseline;

¢ a hand-tuned “oracle” implementation using an op-
timal configuration discovered through an exhaustive
search of the optimisation space. This will measure
the ability of the autotuner to converge towards opti-
mal parameters over time;

e a “gold standard” implementation using hand tuned
OpenCL without the SkelCL abstractions. This will
compare the performance cost of using the high-level
Algorithmic Skeleton abstractions against the reduc-
tion in programmer effort required to implement the
equivalent program in pure OpenCL.

An important factor in the quality of the evaluation
will be selecting performance benchmarks that are repre-
sentative of a range of real world use cases. For this pur-
pose, I will use existing SkelCL. benchmarks which have
been used in previous research: Mandelbrot sets [14], So-
bel Edge Detection [15], and List-mode Ordered Subset
Expectation Maximisation [17]. Additionally, a standard
benchmark suite for heterogeneous computing such as Ro-
dinia [18] could be used by first porting the implementa-
tions to use the SkelCL library.

The stochastic nature of autotuning and machine
learning techniques means that the performance evalu-
ation of representative benchmarks must be performed
with statistical rigour, using appropriate techniques for
profiling benchmark performance over multiple itera-
tions [19]. The evaluation approach must carefully isolate
independent variables and provide a controlled environ-
ment for testing the effects of altering them.

'http://git-scm. com/
’https://github.com/

In addition to the overall performance evaluation of
the dynamic autotuner, additional measurements can be
made to isolate and record the overhead introduced by
the runtime, the amount of time required to converge on
optimal configurations, and the ability of the dynamic
optimiser to adapt to changes in the runtime environ-
ment. This last measurement may require execution of
the benchmarks on multiple different hardware configu-
rations so as to measure the ability of the autotuner to
adapt to different environments.

6 Work plan

Figure 4 shows the schedule for this project. In addi-
tion to the Intermediate Progress Presentation in April, I
have created two personal milestones to provide progress
checks. The first milestone corresponds with the end of
the exploratory phase of development. The second mile-
stone is at the end of the implementation stage. It marks
the point at which development of the code base will
freeze so as to enable an extended evaluation. I will use
the git version control system! to track all source code
and experimental data. I will use GitHub? to track is-
sues and milestone progress.

7 Conclusion

This paper proposes the development of a dynamic au-
totuner for SkelCL which uses online machine learning
techniques to explore the space of optimisation parame-
ters and recommend optimal configurations based on dy-
namic features. This will be the first attempt to imple-
ment a dynamic autotuner using online machine learning
for Algorithmic Skeletons, and will enable runtime per-
formance tuning without the requirement of long offline
training periods associated with state of the art Algorith-
mic Skeletons autotuners.

Our approach will be to first modify SkelCL so that
it enables runtime configuration of optimisation param-
eters and dynamic extraction of features. Then we will
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evaluate the significance of dynamic features and optimi-
sation parameters to develop an effective online machine
learning algorithm. We will implement this as a dynamic
autotuner which searches and builds a persistent model of
this optimisation space at runtime. We will compare the
performance of this dynamic autotuner across a number
of benchmarks against a baseline unmodified SkelCL and
a gold standard hand-tuned OpenCL implementation.
Algorithmic Skeletons have been shown to improve pro-
grammer effectiveness by providing the necessary high-
level abstractions for parallel programming. The SkelCL
library has been used to implement high performance
medical imaging applications using shorter, better struc-

tured programs that perform within 5% of a hand tuned
OpenCL implementation [16]. As the trend towards in-
creasingly parallel hardware continues, the demand for
high-performance parallel programming abstractions will
continue.

We are ideally suited for tackling this difficult problem
at University of Edinburgh, with expert researchers in
the fields of Algorithmic Skeletons, iterative compilation,
and machine learning based optimisation. Previous re-
search at the University of Edinburgh has addressed the
static autotuning of Algorithmic Skeletons [5, 20], which
will provide a point of reference for comparing a dynamic
autotuning approach.
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