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ABSTRACT
As the usage of machine learning techniques is becoming ubiquitous, the efficient execution of neural networks is
crucial to many applications. Frameworks, such as Halide and TVM, separate the algorithmic representation of
the deep learning model from the schedule that determines its implementation. Finding good schedules, however,
remains extremely challenging. Auto-tuning methods, which search the space of valid schedules and execute
each candidate on the hardware, identify some of the best performing schedules, but the search can take hours,
hampering the productivity of deep learning practitioners. What is needed is a method that achieves a similar
performance without extensive search, delivering the needed efficiency quickly.

We model the scheduling process as a sequence of optimization choices, and present a new technique to accurately
predict the expected performance of a partial schedule using a LSTM over carefully engineered features that
describe each DNN operator and their current scheduling choices. Leveraging these predictions we are able to
make these optimization decisions greedily and, without any executions on the target hardware, rapidly identify an
efficient schedule.

Our evaluation shows that our performance predictions are one order of magnitude more accurate than the state
of the art. This enables us to find schedules that improve the execution performance of deep neural networks by
2.6× over Halide and 1.5× over TVM. Moreover, our technique is two to three orders of magnitude faster than
that of these tools, and completes in seconds instead of hours.

1 INTRODUCTION

The rise of machine learning techniques has been accompa-
nied by the development of deep learning frameworks such
as PyTorch (Paszke et al., 2019) and TensorFlow (Abadi
et al., 2015). The majority of these tools provide a collection
of primitive tensor operators to perform tasks such as matrix
multiplication, convolution and pooling, which are applied
in sequence by a runtime interpreter to derive the outputs of
the neural network from its input tensors.

Though pervasive, this approach has two main downsides.
First, it requires the development, optimization, and main-
tenance of a large library of operators, which necessitates
scarce human expertise. As a result, these frameworks tend
to focus on the most common operators that are only opti-
mized for a limited set of use cases, leaving a lot of perfor-
mance on the table. Second, operators can only exchange
data through global memory, which is a significant bot-
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tleneck, especially in the case of low arithmetic intensity
operators such as the activation functions.

To avoid these problems, projects such as Halide (Ragan-
Kelley et al., 2012) and TVM (Chen et al., 2018a) proposed
to represent tensor computations, such as the ones under-
lying deep learning, using a declarative domain specific
language based on Einstein’s notation. This high-level rep-
resentation is then compiled into assembly code that can
be executed directly on hardware. This approach abstracts
away from the user key implementation choices such as
loop ordering, blocking, vectorization, unrolling, or par-
allelization, and leaves it up to the compiler to figure out
which solution, a.k.a. schedule, most efficiently leverages
the available hardware resources.

Various efforts, such as Chen et al. (2018b); Zheng et al.
(2020b); Adams et al. (2019); Zheng et al. (2020a), have
attempted to tackle the scheduling problem by framing it
as a search in the space of valid implementations. Given
the combinatorial nature of the problem, it is impossible to
exhaustively consider all the possible solutions. To avoid
this issue, these efforts use various heuristics to attempt
to prune the solution space and focus the search inside its
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most promising regions. However, in doing so they fail to
consider many efficient schedules. Moreover, even after
pruning, they are still left with many candidates that need
to be ranked by their performance. Due to the inaccuracies
of their cost models, these projects ultimately measure the
execution time of the top contenders they identified on real
hardware, and this benchmarking process is time consuming.
Altogether, these projects suffer from very high search times,
yet may still generate suboptimal implementations.

In this work, we propose to overcome these limitations.
First, we detail how to build and train a model capable
of accurately predicting the performance of deep learning
workloads. Second, through an iterative process, we derive
from this initial model a value function capable of predict-
ing, given a partial set of scheduling decisions, the best
achievable performance over all remaining decisions. The
addition of this look ahead makes it possible to quickly
schedule an entire pipeline by making a sequence of local
decisions that are globally optimal.

We make the following contributions:

• A method to derive a set of valid implementation can-
didates.

• A performance model capable of predicting the speed
of a fully scheduled pipeline almost as accurately as
benchmarking on actual hardware while being many
times faster. Our cost model is more than one order of
magnitude more accurate than the ones proposed by
(Adams et al., 2019) and (Chen et al., 2018b)

• A technique to iteratively derive from our cost model
a value function that forecasts the best performance
achievable for a partially scheduled pipeline. We
use this value function to greedily navigate the so-
lution space towards the best candidate two to three
orders of magnitude faster than previously published
approaches.

• Combining these techniques, we are able to identify
schedules that outperform Halide and TVM by 2.6×
and 1.5× respectively.

2 RELATED WORK

Polyhedral compilers (Bondhugula et al., 2008b) such as
Vasilache et al. (2018), Baghdadi et al. (2015), or Bond-
hugula et al. (2008a) offer automatic scheduling of affine
loop nests. They restrict the program transformations they
consider to a set of affine loop transformation that maxi-
mizes outer loop parallelism and minimizes statement-to-
statement reuse distance. This formulation can be solved
exactly using an ILP solver. However, important program
optimizations such as introducing redundant computation to
improve locality and parallelism must be excluded, and the
implicit cost model is only weakly correlated with actual

performance. This limits the robustness of the solution as
well as the performance that can be ultimately delivered.

Alternatively, high-performance computing solutions such
as ATLAS (Whaley & Dongarra, 1998) and FFTW (Frigo,
1999) apply black box optimization techniques to automati-
cally tune the implementation of key components of their
libraries. They work by providing a parametrized code gen-
erator capable of producing many functionally equivalent
implementations of an algorithm. They can then automati-
cally identify the most efficient candidate implementation
by measuring the actual run time of each one on the target
hardware. Over the years, many different search techniques
have been applied to auto tuning of compiler optimizations,
including random sampling, genetic algorithms and simu-
lated annealing (Kisuki et al., 2000; Cooper et al., 2005).

Halide (Ragan-Kelley et al., 2012) introduced a domain
specific language capable of encoding almost every tensor
based computation. It relies on a combination of various cost
models to guide its search, either handcrafted (Mullapudi
et al., 2016; Sioutas et al., 2018; 2020) or learned (Adams
et al., 2019), with optional benchmarking to rank the top
solutions identified during the search. However, due to the
extensive nature of the search, this process can take several
hours for large problems such as the ones corresponding
to commonly used neural networks. Moreover, the limited
accuracy of these cost models limits the quality of the result.

More recently, TVM (Chen et al., 2018b) provided an imple-
mentation of many common deep learning (DL) operators in
a DSL derived from Halide. This allowed it to annotate each
operator with handwritten schedule templates that restrict
the search space for each DL operator to good subspaces
identified before hand. However, constructing good tem-
plates requires huge efforts and scarcely available expertise
in both tensor operators and hardware. As a result, these
templates fail to take into consideration good but far from
obvious scheduling solutions. Furthermore, a cost model
is used to quickly discard the solutions that are predicted
to perform poorly. However, the limited accuracy of this
cost model prevents TVM from leveraging it much. Instead,
TVM heavily depends on benchmarking to assess the fitness
of a schedule. As a result, autotuning deep neural network
takes several hours.

To reduce the need for human expertise, FlexTensor (Zheng
et al., 2020b) demonstrates how to build generic sched-
ule templates, and navigates the larger search space using
a combination of heuristics, simulated annealing, and Q-
learning (Watkins & Dayan, 1992). However, they still
benchmark workloads on real hardware to generate their
reward signal on CPU and GPU, which results in search
times of several hours. Ansor (Zheng et al., 2020a) uses a
set of hardcoded rules to automatically generate schedule
templates without human intervention. Like TVM, it relies



Value Learning for Throughput Optimization of Deep Neural Networks

on a cost model to guide its search through the solution
space, and auto-tunes when its cost model suggests good
points. However, the process takes several hours.

Machine Learning based methods are also used for other
applications. For example, Neo (Marcus et al., 2019) relies
on deep neural networks to generate database query execu-
tions plans. It bootstraps its query optimization model from
existing optimizers and continues to learn from incoming
queries.

3 BACKGROUND

Neural networks are commonly modeled using a graph of
deep learning tensor operators. Indeed, after being intro-
duced by TensorFlow (Abadi et al., 2016), this type of rep-
resentation has gained wide acceptance and has become a
de-facto standard available in PyTorch (Paszke et al., 2019)
(through TorchScript), ONNX (ONN, 2017 (accessed Octo-
ber 8, 2020), MXNet (Chen et al., 2015), and others. How-
ever, as the semantics of the operators is implicit and their
implementation is opaque, these graph representations are
not directly amenable to an end-to-end analysis. Moreover,
any optimization at this level is inherently limited to the
set of rewrites that can be represented using a combination
of the available set of tensor operators. To avoid these two
problems, compilers such as Halide and TVM encode each
operator using one or more tensor expressions based on Ein-
stein notation (Einstein, 1923). We use the same approach
in our work, and in fact, we implement our contributions
on top of Halide. In this section, we introduce the Halide
tensor expression representation and scheduling directives,
as well as the terminology we use throughout this paper.
Readers already familiar with this topic can skip directly to
section 4.

The equations in (1) illustrate how one can model the for-
ward pass of a simple neural network using tensor expres-
sions. The indices (aka variables) i, j, and k, identify the
location of the coefficients in the tensors X , Y , Z, T , A, B,
and W . The variables i and j, used to index the result of
various expressions, are called pure variables. The variable
k, which doesn’t appear in any result, is called a reduction
variable.

X(i, j) =
∑
k

A(i, k) ·W (k, j)

Y (j) = tanh(B(j))

Z(i, j) = X(i, j) + Y (j)

T (i, j) = max(0, Z(i, j))

(1)

This computation (aka pipeline) consists of 4 statements,
which we call stages. Z is a consumer of X , and a producer
for T . The number of variables used to index a tensor is
called its rank. The span of each variable is known as its

extent. It is automatically inferred by the compiler from the
dimensions of the pipeline inputs, by tracing the propagation
of variables from the inputs through the statements of the
program.

The tensor expressions are converted into a collection of
nested loops. The schedule, a set of high level directives,
instructs the compiler how to perform this task. Sched-
ules may leave some aspects of the implementation undeter-
mined, in which case the compiler uses default choices to
complete the schedule. Listing 1 depicts the loop nest gen-
erated by a simple schedule that forces the materialization
of every expression in memory.

X = buffer[I, J]
for i in range(0, I, 1):

for j in range(0, J, 1):
X[i, j] = 0
for k in range(0, K, 1):
X[i, j] += A[i, k] * W[k, j]

Y = buffer[J]
for j in range(0, J, 1):
Y[j] = tanh(B[j])

Z = buffer[I, J]
for i in range(0, I, 1):

for j in range(0, J, 1):
Z[i, j] = X[i, j] + Y[j]

T = buffer[I, J]
for i in range(0, I, 1):

for j in range(0, J, 1):
T[i, j] = max(0, Z[i, j])

Listing 1. Naive implementation. Each variable corresponds to a
loop. The result of each expression is materialized in memory
using a buffer.

Such a mapping would not perform well, however. We can
use a combination of the Halide scheduling primitives listed
in Table 1 to improve the situation.

For example, as depicted in Listing 2, we can leverage the
split and reorder directives to tile (Wikipedia, 2020)
the computation of X and improve the locality of the mem-
ory it accesses.

Furthermore, we can altogether remove the need to materi-
alize the values of Z by inlining its computation into that of
T using a compute at directive.

Listing 3 demonstrates how to leverage modern hardware by
parallelizing the computation and making use of SIMD in-
structions. Furthermore, it demonstrates how to take advan-
tage of the store at scheduling directive to only partially
materialize the matrix multiplication, thus further improving
the locality of memory accesses.

Listings 2 and 3 illustrate some of the possible ways to
organize the computation of our example pipeline using
scheduling directives.
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Optimization Description Parameter

split Transform a loop into two nested loops. Split factor.
reorder Exchange two loops. IDs of the loops to swap.

vectorize Use SIMD instructions to encode the loop. ID of the loop to vectorize.
parallel Parallelize the computation over multiple CPU cores. ID of the loop to parallelize.

compute at Inline the evaluation of a loop into another one. ID to the producer to inline and ID of the loop
into which to inline it.

store at Store the values generated by a stage into a temporary buffer. ID of the stage to materialize and location of the
loop in which to materialize it.

Table 1. Primitive scheduling directives used to organize the computation of a deep learning computation pipeline.

X = buffer[I, J]
for ii in range(0, I, B_I):

for jj in range(0, J, B_J):
for i in range(ii, ii+B_I, 1):
for j in range(jj, jj+B_J, 1):

X[i, j] = 0
for k in range(0, K, 1):
X[i, j] += A[i, k] * W[k, j]

T = buffer[I, J]
for i in range(0, I, 1):

for j in range(0, J, 1):
T[i, j] = max(0, X[i, j]+tanh(B[j]))

Listing 2. Partially tiled implementation of the matrix multiplica-
tion X. Additionally, the evaluation of Y is inlined into that of Z,
and the evaluation of Z is inlined into that of T. This reduces the
amount of memory accesses but forces the recomputation of Y for
each iteration over variable i.

T = buffer[I, J]
parallel for ii in range(0, I, B_I):
Xp = buffer[B_I, J]
for jj in range(0, J, B_J):
for i in range(ii, ii+B_I, 1):
for j in range(jj, jj+B_J, 1):

Xp[i-ii, j] = 0
vectorize for k in range(0, K, 1):

Xp[i-ii, j] += A[i, k] * W[k, j]
vectorize for j in range(0, J, 1):
for i in range(ii, ii+B_I, 1):
T[i, j] = max(0, Xp[i-ii, j]+tanh(B[j]))

Listing 3. Partially parallelized and vectorized implementation. In
addition, the evaluation of the matrix multiplication results is
cached inside the loop over variable i.

4 AUTOMATED SCHEDULING

To automate the process of finding good schedules, we
process the stages of a pipeline one by one. For each stage,
we build a set of candidate solutions as follows:

1. Each variable v in an expression implies a loop of extent
Nv in the naive implementation of the corresponding
stage. We build an initial set of scheduling candidates
C0 by splitting every loop into up to 3 subloops.

2. We extend C0 into C1 by adding to our initial set of
solutions all the possible reorderings of the subloops.

3. We build C2 on top of C1 by adding the option to
vectorize each of the loops of each of the candidates
contained in C1.

4. We then choose at what granularity the stage should
be computed with respect to its consumers, or in other
words, if and how the loops of the stage should be
inlined into the loops of subsequent stages. We also
decide whether the computation should be materialized
in a temporary buffer or not. This grows C2 into C3.

5. Finally, for each solution in C3, we choose which loop
to parallelize. This gives us our final set of candidates
C4.

The action space grows combinatorially with the rank of the
tensors as well as the extent of each dimension. We attempt
to combat this by removing choices that do not work well
together. For example, we only consider split factors that are
a multiple of the vector length for a vectorized loop. Table 2
summarizes the landscape of our final solution space for
a dozen popular neural networks. On average, there are
almost 300,000 choices for each stage, and for an entire

Avg. Branch
Factor

Scheduling
Decisions

Est. Search
Space Size

AlexNet 2.389e5 54 3.3e290
Inception 6.175e4 370 1.5e1773
MNASNet 1.801e4 206 2.3e876
MobileNetV2 3.600e3 207 1.4e736
ResNet18 2.669e5 170 3.9e922
ResNet3D 1.559e6 91 3.8e563
ResNet50 3.304e5 309 3.0e1705
ShuffleNet 1.362e3 301 1.1e944
SqueezeNet 1.421e3 166 3.1e524
Transformer 4.554e4 104 2.0e484
VGG19 9.140e6 178 1.1e1239
Wavenet 6.605e3 133 2.4e376

Average 2.852e5 214 2.4e1167

Table 2. Optimization landscape for 12 neural networks. Branch
factors and search space sizes are estimated using 1,000 randomly
chosen schedules for each model.
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pipeline there are more options than atoms in the universe.

Note that in order to generate the set of candidates C3 for
a stage σi, we need to have settled on the loop structure
of all its consumers. In other words, the set of schedul-
ing solutions available to σi is only determined once all its
consumers have been scheduled. This forces us to gener-
ate candidate schedules for a pipeline sequentially and in
reverse topological order.

We model the problem of choosing the best schedule
amongst all the candidates we identified as a determinis-
tic Markov Decision Process, or MDP (Bellman, 1957),
over a finite horizon with a dynamic but finite action space.
In our formulation, a state Si is a partial schedule, that is
the sequence of individual scheduling decisions sk, with
0 ≤ k ≤ i applied to the stages σ0 through σi of a pipeline.
Note that we index stages starting from the last one since we
process the pipeline in reverse topological order. The set of
actions ai available in state Si is the set of valid scheduling
options available for stage σi+1 given the loop structure
already imposed to stages σ0 to σi by the scheduling deci-
sions s0 through si. We use the notations Si, s0, ...si and s
interchangeably depending on the context.

We propose to solve the MDP by learning an approximation
V (s) of the optimal value function V ∗(s). In layman’s
terms, V ∗(s) is a function capable of predicting the lowest
runtime achievable from state s assuming that we make
optimal scheduling decisions for all the subsequent stages
in the pipeline.

We explain in Section 5 how we implement our value func-
tion using a neural network, and in section Section 6 we
detail how we train it. Once we have our value function ap-
proximation V (s), we greedily schedule the pipeline stage
by stage as explained in algorithm 1.

Algorithm 1 Pipeline scheduling
Input1: Pipeline p with n stages σ1 ... σn
Input2: Value function V (s)
s0 = InitialState
for i = 1 to n do
Ci = GenerateSchedulingCandidates(σi, si−1)
vi =∞
for s in Ci do

if V (s) < vi then
vi = V(s)
si = s

end if
end for

end for
Return: s1 ... sn

For a N -stage pipeline, with an average of M choices avail-
able per stage, we only need to consider N ·M candidates

out of the MN available complete schedules. This enables
us to schedule deep learning workloads extremely quickly
as we will see in Section 7.3.

Note that if we could learn the true value function V ∗(s) in-
stead of an approximation V (s) our approach would ensure
that we find the optimal solution. We will see in section
7.2 how each iteration improves the efficiency of the sched-
ules identified by our approach and discuss how well our
approach performs in practice in Section 7.3.

5 PERFORMANCE PREDICTION

We propose to use a deep neural network to predict the
performance of fully scheduled pipelines (our cost model)
as well as the best achievable performance for a partially
scheduled pipeline (our value function). To achieve the best
possible accuracy and guide our search towards the best
candidates, we paid great attention to the choice of input
features as well as the architecture of the neural network.

5.1 Input Features

The throughput of a neural network depends on two main
factors: the amount of computation and data access to be
performed, and the overall organization of the computation.
Consequently, we devised two groups of input features to
capture this information: a set of intrinsic features that are
invariant to the schedule, and a collection of schedule depen-
dant features that are acquired as the process of scheduling
a pipeline progresses.

When trying to predict the cost of a fully scheduled pipeline,
we can extract acquired features for all the stages. However,
when we try to predict the value of a state Si, we can only
compute acquired features for stages σ0 through σi. We use
zeros for all the remaining stages.

In this setting, the intrinsic features enable our model to
predict how fast each stage could be executed if scheduled
optimally, while the acquired features enable us to capture
how well the scheduled stages are expected to perform.

5.1.1 Intrinsic Features

In order to predict the performance of a computation, we
first capture its intrinsic scale and complexity independently
from the way it is implemented on the hardware. To that
end, we extract directly from the tensor expressions a set of
schedule invariant features that describe each stage of the
computation.

The bulk of a neural network computation is done by prim-
itive floating point operations. We therefore analyze each
tensor expression to extract the total number of primitive
floating point operations to be performed (namely addition,
subtraction, multiplication, divisions, min and max). In or-
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der to tally accurate counts, we make sure to only use these
primitive operations when encoding the neural network into
tensor expression. For example, we replace all the intrinsic
math functions used in neural networks (exp, tanh, ...) with
their Padé approximants (Brezinski, 1996).

Moreover, tensor indexing operations can impact the perfor-
mance of computations significantly since integer divisions
and modulo have very low throughput on CPUs. We there-
fore pay attention to capturing all the integer (additions,
subtractions, multiplications, divisions, modulos, min, and
max) and boolean (logical and, or, xor, not, as well as com-
parisons and select operation) operations required to carry
out each tensor expression.

Last but not least, bringing data from memory to an ALU is
up to two orders of magnitude slower than actually per-
forming a computation on this data. We therefore pay
close attention to modeling memory access patterns. In
our DSL, data transfers can happen when an expression Y
references the data produced by one or more expression Xk.
For each stage Y we compute the total number of references
to the coefficients generated by the expressionsXk. We also
model strided, transposed, and broadcast memory accesses
by building a N by M matrix A for each Xk, where N is the
rank of Y and M the rank of Xk. We populate the matrix A
as follow: A(i, j) = αj if and only if the ith pure variable
used to index Y is the jth variable used to index Xk. αj is
the corresponding stride.

We made room in the feature vector of each stage for refer-
ences to up to 3 other stages. To deal with this limitation,
we encode operators that require more than 3 inputs using
several stages. For example, the concatenation of 5 tensors
would be encoded a chain of 2 concatenations of 3 tensors.
We support tensors of up to 5 dimensions, which enables
us to handle most neural networks, including the ones mak-
ing use of 3d convolutions. We fill the unused slots in the
feature vector with zeros.

5.1.2 Acquired Features

The reorganization of the computation caused by a schedule
impacts how efficiently the ALUs, the memory subsystem
with its cache hierarchy, and the many cores of modern
CPUs can be utilized. We designed a set of schedule de-
pendent features to capture these effects, as well as various
overheads inherent in the schedule. We call these features
acquired features as they are progressively collected as we
schedule the pipeline. These features include:

• The number of vectorized as well as scalar calls to
each floating point and integer primitive arithmetic
operation.

• The extent of each loop (after splitting).
• For each split loop, the total number of bytes read

and written, the total number of unique cache lines
accessed, the number of bytes read and used more
than once as well as the distance in bytes between
reuses. We designed these features to allow the model
to predict whether a schedule can leverage the CPU
caches, and if so at which level and how efficiently.

• The amount of recomputation that needs to be per-
formed due to inlining.

• The CPU core utilization defined as the ratio of the
number of parallel tasks over the number of CPU cores.

• The number of ancillary overheads that impact perfor-
mance, such as allocations and deallocations of buffers
on the heap, an estimate of the number of context
switches required to wake up threads when paralleliz-
ing a computation, an estimate of the number of page
faults, the number of false sharings (Scott & Bolosky,
1993).

5.1.3 Derived Features

Products and ratios of features are hard to learn for neural
networks without significantly increasing the number of lay-
ers beyond what would be acceptable from a search time
perspective. To avoid this we extended our intrinsic and
acquired feature sets with several metrics derived from the
original features, such as various measures of the arithmetic
intensity imposed by the schedule (e.g. the ratio of vec-
tor instructions by unique bytes read). We determined the
combinations of primitive features that are useful through
extensive empirical testing.

5.2 Model Architecture

The performance of each stage σ in the pipeline we are
trying to optimize depends on three factors:

• Its own schedule.
• The schedule of the stages σk consumed by σ since

this determines the layout of the data handed over to S
as well as the likelihood this data resides in one of the
CPU caches.

• The schedule of the stages σl (if any) that are executed
between all the σk and σ, since these intermediate
stages σl have the potential to flush the data left by the
σk out of the caches, thus forcing its reload by σ from
a higher level cache or even from main memory.

Moreover, the set of scheduling decisions made for the
initial stages of a pipeline impact the performance of the yet
to be scheduled stages.

To capture these effects, we architected our model around
a bidirectional LSTM (Hochreiter & Schmidhuber, 1997)
that enables latent features to flow from scheduled stages
towards unscheduled stages, as well as from producer stages
to consumer stages, as depicted in Figure 1.
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Figure 1. Architecture of the neural network we use to predict the throughput of a N-stage pipeline.

We start by normalizing the features extracted by our com-
piler for each stage using the normalization technique intro-
duced by (Ioffe & Szegedy, 2015). However, we normalize
the features over the entire training set instead of doing so
per batch. This helps us better deal with some of the fea-
tures that are rare in our training set, such as the number of
logical or/and/not operations. To further reduce the runtime
of the model, we embed the normalized input features into
a low-dimensional vector space, which we can feed directly
into our LSTM.

The outputs of each LSTM timestep act as a weighting factor
that we multiply coefficient-wise with the embedded feature
vector of each stage. We then reduce the size of the latent
space using a simple linear layer, sum the resulting feature
vectors across all the stages, and lastly pass that sum to a
linear layer to generate our final prediction.

6 ITERATIVE VALUE TRAINING

To train our value function V (s), we use an iterative ap-
proach to progressively refine each estimate Vj(s) from its
previous approximation Vj−1(s). We bootstrap the process
by training an initial cost model that we use as a rough
estimate of V0(s).

6.1 Pipeline Dataset

To train our value function and initial cost model, we created
over 10,000 random neural networks, ranging in size from
1 to 200 operators, with up to 4 inputs (excluding weights)
and 15 outputs. The inputs have up to 4 dimensions of
size ranging between 1 and 1024. All these parameters
are sampled uniformly. The sequence of operators, their
connectivity, and parameters are also chosen at random

among all the legal options (e.g. we cannot apply a 5 by 5
convolution on a 3 by 3 input without padding).

6.2 Initial Cost Model

To train our initial cost model, we generated approximately
1,000 random complete schedules for each of our pipelines.
We benchmarked each schedule 10 times and recorded the
corresponding runtimes along with the corresponding intrin-
sic and acquired features.

To ensure that our model is not biased toward over or under
predictions, we use the absolute value of the relative error,
or P /M where P is the prediction of our model and M is
the mean measured performance over ten runs. Furthermore,
we add two components to the loss:

• A criticality factor C, defined as the ratio of the best
runtime measured for the pipeline over the runtime
of the schedule. As as long as our cost model ranks
poorly performing schedules below the best ones, it
serves its intended purpose. C enables us to relax the
accuracy requirement for the least efficient schedules
and instead focus on the most critical ones.

• A deweighting factor D, based on the confidence in
the reliability of the ground truth for that schedule,
estimated as the inverse of the standard deviation of all
the measurements for the schedule.

Our final loss is the product of these 3 components.

L = | log(P/M)| ·D · C

6.3 Value Function Iteration

Our technique is inspired from the well known value it-
eration approach summarized in (Sutton & Barto, 2018).
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Algorithm 2 Iteration of our value function approximation.
Input: set of pipelines P
Input: value function Vi−1(s)
Initialize Vi(s) to Vi−1(s)
for p in P do

for k in [0, 100] do
s0, ...sn = BestSchedule(p, Vi,εk)
for sj in s0, ...sn do
tj+1, ...tn = BeamSearch(sj , Vi−1))
r = Benchmark(s0, ...sj , tj+1, ...tn)
Vi(sj) = min(r, Vi(sj))

end for
end for

end for
Return: Vi(s)

Starting from a randomly initialized value function, the al-
gorithm iterates over all the states s and all the actions a
of the MDP. It refines the value function V for each state s
from the expected reward associated with taking action a by
using the following rule until the process converges:

V (s) = max
a

(E[r|s, a] + V (s′))

However, we cannot use this approach directly. Indeed, we
face two main hurdles. First, we cannot measure the unit
reward associated with taking an action. We can only access
the end to end runtime of a fully scheduled pipeline. Second,
it would be impractical to exhaustively visit all the states
associated with the scheduling of a single pipeline for all
but the shortest ones.

On the other hand, we can make a few simplifications. First,
we do not need to uniformly sample all the actions available
from a state s. Although we need a precise estimate of
the value function associated with the “best“ states, we
only need a rough estimate for the less interesting states
(using the intuition behind the criticality factor that we use
in our loss function). Consequently, we can undersample
the actions that lead to the less interesting states. Second,
we can derive an estimate for the value function for a state
s by searching for the best schedule starting from s instead
of relying on rewards. Third, we do not need to start from a
random value function. We can instead use our cost model to
bootstrap the process of estimating the value function. This
helps the initial search find much more accurate estimates
for V1(s).

Based on these observations, we built Algorithm 2: we
extract 100 schedules for each pipeline in our training set,
using the BestSchedule procedure previously described in
Algorithm 1. We inject a small amount of random noise ε to
the predictions made by the value function to ensure that we
cover a significant portion of the interesting states of each

pipeline.

For each state si in the greedy schedules, we identify how
to best schedule the remaining stages of the pipeline by
running a beam search starting from si. We use a beam size
of 320, and our previous estimate of the value function to
guide the search. We benchmark the resulting schedule and
use its measured runtime to refine the estimate of the value
function V for the state si.

Starting from V0, which is our initial cost model, we then it-
eratively build progressively more accurate estimates Vi(s).

7 EVALUATION

We implemented our approach by coupling C++ code to
quickly generate candidate schedules, extract intrinsic and
acquired features, and run our search policy with Pytorch
code to implement, train, and evaluate our cost model and
value functions. We used Halide to compile our schedules
into assembly code.

We ran all our experiments on an Intel Xeon D-2191A CPU
running at 1.60GHz with 48GB of RAM and a NVidia Tesla
M40 GPU.

7.1 Cost Model

We trained our initial cost model on a total of 13,352
pipelines converted from a set of randomly created ONNX
models, with an average of 1,184 schedules per pipeline.
We evaluated its accuracy on 12,000 schedules extracted
from the models listed in Table 2.

We compared the accuracy of our cost model against that of
Halide (Adams et al., 2019) and TVM (Chen et al., 2018b).
We retrained the Halide cost model on our training set and
evaluated it on our test set. The TVM cost models are trained
online directly on the data generated by the benchmarking
process of individual deep learning operators. We used this
same data as the test set on which we evaluated the accuracy
of their XGBoost based model. Note that overfitting is not a
concern in this case since TVM retrains its cost model for
every pipeline it optimizes.

We summarized the average prediction error, the maximum
prediction error, and the coefficient of determination R2 for
all three models in Figure 2.

Our predictions have an average error of 4.9%, representing
a significant improvement over the Halide and TVM cost
models which have an average error of 64.7% and 103.8%
respectively. Furthermore, our prediction error is almost
down to the level of noise inherent in any performance mea-
surement, which is 2.4% on average and 282% in the worst
case on both our training and test sets. We define the mea-
surement noise for each schedule as the difference between
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Figure 2. Aggregate accuracy of TVM, Halide, and our approaches
for estimating the runtime of deep learning workloads.

the two extreme measurements for that schedule divided
by the average measurement. The average (resp. worst
case) noise for the test and training set is the average (resp.
maximum) of the measurement noise of each schedule.

7.2 Value Function

We don’t have a direct way to demonstrate that our succes-
sive value function approximations Vi(s) converge towards
the optimal value function V ∗(s). Instead we show that with
each iteration our value function estimates are better able to
guide a search. In Figure 3 we plot the relative performance
of the schedules selected by our greedy search as well as a
standard beam search under the guidance of three successive
estimates V0, V1, and V2 on the models listed in Table 2.
V0 is our initial cost model. Due to its lack of look-ahead
ability, it is a poor guide for a greedy search. Unsurprisingly,
beam search performs substantially better. As V1 and V2
refine the estimates of our value function the gap between
the quality of the schedules identified by a greedy and a
beam search decreases, while the overall performance of the
schedules increases.

Figure 3. Relative speedups of the schedules generated by our
value function. The schedules are found using either a greedy
or a beam search guided by successive approximations of our
value function V0, V1, V2.

7.3 Benchmarks

We evaluate the ability of our search strategy to identify
good schedules on a diverse set of deep learning workloads
summarized in Table 2, comprehending a range of runtime
comprised between 10 milliseconds and 3.4 seconds.

In Figure 4a, we compare the quality of the implementations
found by the following systems: PyTorch 1.5, AutoTVM
version 0.6, and the Halide auto-scheduler version 8.0.0.
PyTorch does not auto-tune, or search any optimization
space. We configured AutoTVM to use 1 thread per core.
We ran the Halide auto-scheduler with its default settings
of 5 search passes with each pass identifying 32 candidate
schedules, and benchmarking to do the final ranking of the
160 candidates.

Our approach finds schedules that outperform PyTorch, Au-
toTVM, and Halide, producing geomean speedups of 5.1×,
1.5×, and 2.6× respectively.

RL based methods can be sensitive to stochastic initializa-
tion. To measure the impact of this effect on the quality of
the schedule our approach generates, we trained 10 distinct
value functions making sure we initialize our random num-
ber generator with a different seed each time. We then ran
the schedule search under the guidance of these 10 value
functions, and measured the performance of the correspond-
ing implementations. On average the performance varies by
±8.3%, as represented by the error bars on Figure 4a.

We show the search time of the systems in Figure 4b. Py-
Torch does not search for good solutions. AutoTVM takes
considerable time, requiring 3 hours on average and up to 12
hours to complete the search. Halide takes an average of 20
minutes and up to 2.5 hours. Our system with cost and value
functions takes only an average of 13 seconds to optimize
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(a) Speedup of schedules over PyTorch. Higher is better.
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Figure 4. Performance of final schedules relative to PyTorch (a) and time taken to schedule deep learning workloads (b). We plot the
search times on a log scale. We compare our results against the Halide autoscheduler (Adams2019) and AutoTVM using the published
configuration. TVM failed to load the Transformer and Wavenet models. For fairness, we exclude those models from the AutoTVM result
aggregates.

a neural network and less than 1 minute in the worst case.
Our policy based search is by far the most efficient.

8 CONCLUSION

By combining machine learning techniques with a strong
set of features, it is possible to predict the latency of a deep
learning workload nearly as precisely as by benchmarking
the workload on real hardware. Moreover, by leveraging this
cost model we built a value function capable of accurately
predicting, given a partial set of scheduling decisions, the
best achievable performance over all remaining decisions.

We use this value function to greedily navigate the space of
solutions without having to benchmark candidate schedules
to evaluate their fitness. This enables us to both find better
candidates while speeding up the scheduling process by
several orders of magnitude compared to previous state of
the art.
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