
PROGRAML: A Graph-based Program Representation for Data Flow Analysis
and Compiler Optimizations

Chris Cummins * 1 Zacharias V. Fisches * 2 Tal Ben-Nun 2 Torsten Hoefler 2 Michael O’Boyle 3 Hugh Leather 1

Abstract
Machine learning (ML) is increasingly seen as a
viable approach for building compiler optimiza-
tion heuristics, but many ML methods cannot
replicate even the simplest of the data flow analy-
ses that are critical to making good optimization
decisions. We posit that if ML cannot do that,
then it is insufficiently able to reason about pro-
grams. We formulate data flow analyses as super-
vised learning tasks and introduce a large open
dataset of programs and their corresponding la-
bels from several analyses. We use this dataset
to benchmark ML methods and show that they
struggle on these fundamental program reason-
ing tasks. We propose PROGRAML – Program
Graphs for Machine Learning – a language-
independent, portable representation of program
semantics. PROGRAML overcomes the limita-
tions of prior works and yields improved perfor-
mance on downstream optimization tasks.

1. Introduction
Compiler implementation is a complex and expensive ac-
tivity (Cooper & Torczon, 2012). For this reason, there
has been significant interest in using machine learning to
automate various compiler tasks (Allamanis et al., 2018).
Most works have restricted their attention to selecting com-
piler heuristics or making optimization decisions (Leather
& Cummins, 2020). Whether learned or engineered by hu-
man experts, these decisions naturally require reasoning
about the program and its behavior. Human experts most
often rely upon data flow analyses (Kildall, 1973; Kam &
Ullman, 1976). These are algorithms on abstract interpre-
tations of the program, propagating information of interest
through the program’s control-flow graph until a fixed point
is reached (Kam & Ullman, 1977). Two examples out of

*Equal contribution 1Facebook AI Research, USA 2ETH
Zürich, Switzerland 3University of Edinburgh, United Kingdom.
Correspondence to: Chris Cummins <cummins@fb.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Compiler

Input Program

Intermediate
Representation

Optimization
Pass

Output
Executable

Message Passing
Neural Networks

PROGRAML
Representation

Figure 1: Our proposed approach for compiler analyses
driven by graph-based deep learning.

many data flow analyses are: liveness – determining when
resources become dead (unused) and may be reclaimed;
and available expressions – discovering which expressions
have been computed on all paths to points in the program.
Prior machine learning works, on the other hand, have typ-
ically represented the entirety of the program’s behavior as
a fixed-length, statically computed feature vector (Ashouri
et al., 2018). Typical feature values might be the number of
instructions in a loop or the dependency depth. The demon-
strable weakness of these techniques is that they are triv-
ially confused by the addition of dead code, which changes
their feature vectors without changing the program’s be-
havior or its response to optimizations. Such learning algo-
rithms are unable to learn their own abstract interpretations
of the program and so cannot avoid these pitfalls or more
subtle versions thereof (Barchi et al., 2019).

Recently, there have been attempts to develop representa-
tions that allow finer-grain program reasoning. Many, how-
ever, are limited both by how inputs are represented as
well as how inputs are processed. Representations based
on source code and its direct artifacts (e.g., AST) (Alon
et al., 2018a; Yin et al., 2018; Haj-Ali et al., 2020; Cum-
mins et al., 2017b) put unnecessary emphasis on naming
and stylistic choices that may not correlate with the func-
tionality of the code (e.g., Fig. 2a). Approaches based on
intermediate representations (IR) (Ben-Nun et al., 2018;
Mirhoseini et al., 2017; Brauckmann et al., 2020) remove
such noise but fail to capture information about the pro-
gram that is important for analysis (e.g., Fig. 2b variables,
Fig. 2c commutativity). In both cases, models are expected

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations

to reason about the flow of information in programs using
representations that do not directly encode this information.
Clearly, a program representation is needed that enables
machine learning algorithms to reason about the execution
of a program by developing its own data flow analyses.

Since current approaches are ill-suited to program-wide
data flow analysis, we propose overcoming some of their
limitations by making the program’s control, data, and call
dependencies a central part of the program’s representa-
tion and a primary consideration when processing it. We
achieve this by seeing the program as a graph in which
individual statements are connected to other statements
through relational dependencies. Each statement in the pro-
gram is understood only in the context of the statements
interacting with it. Through relational reasoning (Battaglia
et al., 2018), a latent representation of each statement is
learned that is a function of not just the statement itself,
but also of the (latent) representations of its graph neigh-
borhood. Notably, this formulation has a striking similarity
to the IRs used by compilers, and the iterative propagation
of information resembles the transfer functions and meet
operators in traditional data flow analyses (Kildall, 1973).

Recently proposed techniques for learning over graphs
have shown promise in a number of domains (Ziwei
et al., 2020).With a suitable representation and graph-based
model, we extend these approaches to the domain of com-
piler analysis, enabling downstream tasks built on top of
such graph models to natively incorporate reasoning about
data flow into their decision making. This improves perfor-
mance on downstream tasks without requiring additional
features, although challenges with respect to generalization
to large programs at test-time remain and are discussed in
detail. Figure 1 illustrates our approach. We make the fol-
lowing contributions:

• We propose a portable, language-independent graph
representation of programs derived from compiler
IRs. PROGRAML1 simultaneously captures whole-
program control-, data-, and call relations between in-
structions and operands as well as their order and data
types. PROGRAML is a compiler-agnostic design for
use at all points in the optimization pipeline; we pro-
vide implementations for LLVM and XLA IRs.

• We introduce a benchmark dataset that poses a suite
of established compiler analysis tasks as supervised
machine learning problems. DEEPDATAFLOW (Cum-
mins, 2020b) comprises five tasks that require, in
combination, the ability to model: control- and
data-flow, function boundaries, instruction types, and
the type and order of operands over complex pro-
grams. DEEPDATAFLOW is constructed from 461k

1https://github.com/ChrisCummins/ProGraML

real-world program IRs covering a diverse range of
domains and source languages, totaling 8.5 billion
data flow analysis classification labels.

• We adapt Gated-Graph Neural Networks (GGNN) to
the PROGRAML representation. We show that, within
a bounded problem size, our approach achieves ≥
0.939 F1 score on all analysis tasks, a significant im-
provement over state-of-the-art representations. We
set a new state-of-the-art on two downstream opti-
mization tasks for which data flow analyses are im-
portant.

2. Related Work
Data flow analysis is a long established area of work firmly
embedded in modern compilers. Despite its central role,
there has been limited work in learning such analysis.
Bielik et al. (2017) use ASTs and code synthesis to learn
rule-sets for static analyses, some of which are dataflow-
related. Our approach does not require a program genera-
tor or a hand-crafted DSL for rules. Shi et al. (2020) and
Wang & Su (2020) use dynamic information (e.g., register
snapshots and traces) from instrumented binaries to embed
an assembler graph representation. We propose a static ap-
proach that does not need runtime features. Si et al. (2018)
use a graph embedding of an SSA form to generate invari-
ants. The lack of phi nodes and function call/return edges
means that the representation is not suitable for interproce-
dural analysis as it stands. Kanade et al. (2020) explore a
large-scale, context-dependent vector embedding. This is
done at a token level, however, and is unsuited for dataflow
analysis.

Prior work on learning over programs employed methods
from Natural Language Processing that represented pro-
grams as a sequence of lexical tokens (Allamanis, 2016;
Cummins, 2020a). However, source-level representations
are not suited for analyzing partially optimized compiler
IRs as the input source cannot be recovered. In pro-
gram analysis it is critical to capture the structured na-
ture of programs (Raychev et al., 2015; Allamanis et al.,
2017; Alon et al., 2018b). Thus, syntactic (tree-based)
as well as semantic (graph-based) representations have
been proposed (Allamanis et al., 2018; Brauckmann et al.,
2020). Dam et al. (2018) annotate nodes in Abstract Syn-
tax Trees (ASTs) with type information and employ Tree-
Based LSTMs (Tai et al., 2015) for program defect predic-
tion. Both Raychev et al. (2015) and Alon et al. (2018a;b)
use path-based abstractions of the AST as program repre-
sentations, while Allamanis et al. (2017) augment ASTs
with a hand-crafted set of additional typed edges and use
GGNNs (Li et al., 2015) to learn downstream tasks related
to variable naming. Another line of research considers
modelling binary similarity via control-flow graphs (CFGs)

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations

int f(int n) {
 if (n == 0) return 1;
 else return n * f(n-1);
}

int f(int x) {
 if (x == 0) return 1;
 else return n * f(x-1);
}

int fibonacci(int n) {
 if (n == 0) return 1;
 else return n * fibonacci(n-1);
}

factorial
testRun
Iter

99.09%
0.75%
0.07%

sinc
times

77.78%
3.89%
3.36%isPowerOfTwo

factorial
testRun
Iter

50.93%
19.15%
8.92%

(a) code2vec is sensitive to naming over semantics.

sext

load

load

getelementptr

(b) CDFG omits
operands.

0.0

%2%1

%3

fdiv floatfdiv float

(c) XFG cannot distinguish non-
commutative statements.

Figure 2: Limitations in state-of-the-art learnable code representations: code2vec (Alon et al., 2018a), CDFG (Brauckmann
et al., 2020), and XFG (Ben-Nun et al., 2018).

with an adaptation of GNNs called Graph Matching Net-
works (Li et al., 2019).

The history of IR-based graph representations for optimiza-
tion goes back to Ferrante et al. (1987), who remove super-
fluous control-flow edges to ease optimization with a com-
pact graph representation. A more contemporary precursor
to our approach is the ConteXtual Flow Graph (XFG) (Ben-
Nun et al., 2018), which combines control-flow with data-
flow relations in order to learn unsupervised embeddings
of LLVM-IR statements. XFGs omit information that is
critical to analysis including the notion of argument order,
vertices for both variables and constants, and all control-
flow edges. PROGRAML, in combining call-graphs (CG),
control-flow graphs, and data-flow graphs (DFG), offers an
IR-level program representation that is designed to be use-
ful for a variety of purposes from specific program analyses
to downstream optimization tasks. Steiner et al. (2021) pro-
pose a representation based on data flow graphs where each
node uses a hand crafted feature representation. The graphs
are then serialized and processed using LSTMs. Control
and Data Flow Graphs (CDFG) (Brauckmann et al., 2020)
use graph vertices for statements and have bi-directional
edges for control and data dependencies. The CDFG uses
only the instruction opcode to represent a statement, omit-
ting operands, variables, data types, and constants. This
prohibits the reasoning about variables and expressions that
are required for many data flow analyses, including 3 out
of the 5 benchmark tasks that we establish below. Mendis
et al. (2019) represent LLVM-IR using a graph that is spe-
cialized to a vectorization task. They use unique edge types
to differentiate the first five operand positions and aug-
ment the graph structure with vectorization opportunities
that they compute a priori. Our approach is not special-
ized to a task, enabling such opportunities learned (e.g.,
subexpression detection), and uses an embedding weight-
ing to differentiate edge positions without having to learn
separate edge transfer weights for each. Finally, an alter-
nate approach is taken by IR2Vec (Keerthy S et al., 2019),
an LLVM-IR-specific representation that elegantly models

part-of-statements as relations. However, in order to com-
pute the values of the embeddings, IR2Vec requires access
to the type of data flow analyses that our approach learns
from data alone.

3. A Graphical Program Representation
This section presents PROGRAML, a novel IR-based pro-
gram representation that closely matches the data structures
used traditionally in inter-procedural data flow analysis and
can be processed natively by deep learning models. We
represent programs as directed multigraphs where instruc-
tions, variables, and constants are vertices, and relations
between vertices are edges. Edges are typed to differenti-
ate control-, data-, and call-flow. Additionally, we augment
edges with a local position attribute to encode the order of
operands to instructions, and to differentiate between diver-
gent branches in control-flow.

We construct a PROGRAML graph G = (V,E) by travers-
ing a compiler IR. An initially empty graphG = ∅ is popu-
lated in three stages: control-flow, data-flow, and call-flow,
shown in Figure 3. In practice the three stages of graph con-
struction can be combined in a single O(|V |+ |E|) pass.

(I) Control Flow We construct the full-flow graph of an
IR by inserting a vertex for each instruction and connect-
ing control-flow edges (Fig. 3a, 3b). Control edges are
augmented with numeric positions using an ascending se-
quence based on their order in an instruction’s successors.

(II) Data Flow We introduce constant values and vari-
ables as graph vertices (Fig. 3c). Data-flow edges are in-
serted to capture the relation from constants and variables
to the instructions that use them as operands, and from in-
structions to produced variables. As each unique variable
and constant is a vertex, variables can be distinguished by
their scope, and unlike the source-level representations of
prior works, variables in different scopes map to distinct
vertices and can thus be discerned. Data edges have a po-

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations

define i32 @Fib(i32) #0 {
 switch i32 %0, label %3 [
 i32 0, label %9
 i32 1, label %2
]
; <label>:2:
 br label %9
; <label>:3:
 %4 = add nsw i32 %0, -1
 %5 = tail call i32 @Fib(i32 %4)
 %6 = add nsw i32 %0, -2
 %7 = tail call i32 @Fib(i32 %6)
 %8 = add nsw i32 %7, %5
 ret i32 %8
; <label>:9:
 %10 = phi i32 [1, %2], [%0, %1]
 ret i32 %10
}

int Fib(int x) {
 switch (x) {
 case 0:
 return 0;
 case 1:
 return 1;
 default:
 return Fib(x - 1)
 + Fib(x - 2);
 }
}

Input

IR

(a) The input program is passed through the compiler front-
end to produce an IR. In this example, LLVM-IR is used.

[external]

switch

br

0

phi

1

add

2

ret call

add

call

add

ret

(b) A full-flow graph is constructed of instructions and con-
trol dependencies. All edges have position attributes; for
clarity, we have omitted position labels where not required.

[external] i32

switch
1

phi
0

i32
2

i32

add
1

i32

add
1

br

ret

i32

call

i32

i32 calli32

add i32

ret i32

i32
0

1 0

0

1 0

(c) Vertices are added for data elements (elliptical nodes
are variables, diamonds are constants). Data edges cap-
ture use/def relations. i32 indicates 32 bit signed integers.
Numbers on edges indicate operand positions.

[external]

switch

i32 i32

phi

i32

add

i32

add

br

ret

i32

call

i32

i32call i32

addi32

ret i32

i32

(d) Functions have a single entry instruction and zero or
more exit instructions. Call edges are inserted from call
sites to function entry instructions, and return-edges from
function exits to call sites.

Figure 3: PROGRAML construction from a Fibonacci sequence implementation using LLVM-IR.

sition attribute that encodes the order of operands for in-
structions. The latent representation of a statement (e.g.,
%1 = add i32 %0, 1) is thus a function of the vertex
representing the instruction and the vertices of any operand
variables or constants, modulated by their order in the list
of operands.

(III) Call Flow Call edges capture the relation between
an instruction that calls a function and the entry instruc-
tion of the called function (Fig. 3d). Return call edges are
added from each of the terminal instructions of a function
to the calling statement. Control edges do not span func-
tions, such that an IR with functions F produces |F | dis-
connected subgraphs (the same is not true for data edges
which may cross function boundaries, e.g., in the case of a
global constant which is used across many parts of a pro-
gram). For IRs that support external linkage, an additional
vertex is created representing an external call site and con-
nected to all externally visible functions. If a call site ref-

erences a function not defined in the current IR, a dummy
function is created consisting of a single instruction ver-
tex and connected through call edges to all call sites in the
current IR. A unique dummy function is created for each
externally defined function.

4. Graph-based Machine Learning for
Program Analysis

We formulate our system in a Message Passing Neural Net-
work (MPNN) framework (Gilmer et al., 2017). Our design
mimics the transfer functions and meet operators of clas-
sical iterative data flow analysis (Kam & Ullman, 1977;
Cooper et al., 2004), replacing the rule-based implementa-
tions with learnable analogues (message and update func-
tions). This single unified model can be specialized through
training to solve a diverse set of problems without human
intervention or algorithm design.

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations

The PROGRAML model is an adaptation of GGNN (Li
et al., 2015) that takes as input an attributed directed multi-
graph as presented in Section 3. It consists of three logical
phases: input encoding, message propagation and update,
and result readout.

(I) Input Encoding Starting from the augmented graph
representation G = (V,E), we capture the semantics of
the program graph vertices by mapping every instruction,
constant, and variable vertex v ∈ V to a vector represen-
tation h0v ∈ Rd by lookup in a fixed-size learnable embed-
ding table. The mapping from vertex to embedding vector
f : v 7→ h0v must be defined for each IR.

For LLVM-IR, we construct an embedding key from each
vertex using the name of the instruction, e.g., store, and
the data type for variables and constants, e.g., i32* (a
pointer to a 32-bit integer). In this manner, we derive the
set of unique embedding keys using the graph vertices of
a training set of LLVM-IRs described in Section 5.1. This
defines the embedding table used for training and deploy-
ment. An unknown element embedding is used during de-
ployment to map embedding keys which were not observed
in the training data. Since composite types make the size
of the vocabulary unbounded in principle, our data-driven
approach trades a certain amount of semantic resolution
against good coverage of the vocabulary by the available
datasets (cf. Table 1). The embedding vectors are trained
jointly with the rest of the model.

(II) Message Propagation Each iteration step is divided
into a message propagation followed by vertex state up-
date. Receiving messages M(ht−1

w , ewv) are a function of
neighboring states and the respective edge. Messages are
mean-aggregated over the neighborhood after transforma-
tion with a custom position-augmented transfer function
that scales hw elementwise with a position-gating vector
p(ewv):

M(ht−1
w , ewv) =Wtype(ewv)

(
ht−1
w �p(ewv)

)
+btype(ewv)

The position-gating p(ewv) = 2σ(Wp emb(ewv) + bp) is
implemented as a sigmoid-activated linear layer mapping
from a constant sinusoidal position embedding (Vaswani
et al., 2017; Gehring et al., 2017). It enables the network to
distinguish non-commutative operations such as division,
and the branch type in diverging control-flow. In order to
allow for reverse-propagation of information, which is nec-
essary for backward compiler analyses, we add backward
edges for each edge in the graph as separate edge-types.
In all our experiments, we employ Gated Recurrent Units
(GRU) (Cho et al., 2014) as our update function.

Step (II) is iterated T times to extract vertex representations
that are contextualized with respect to the graph structure.

(III) Result Readout Data flow analyses compute value
sets composed of instructions or variables. We support
per-instruction and per-variable classification tasks using a
readout head on top of the iterated feature extraction, map-
ping, for each vertex, the extracted vertex features hTv to
probabilities Rv(h

T
v , h

0
v):

Rv(h
T
v , h

0
v) = σ

(
f(hTv , h

0
v)
)
· g(hTv)

where f(·) and g(·) are linear layers and σ(·) is the sigmoid
activation function. Allowing the readout head to access
the initial node state h0v in its gating function σ(f(·)) acts as
a skip connection from the input embedding to the readout.

5. Data Flow Experiments
Data flow analysis is at the heart of modern compiler tech-
nology. We pose a suite of data flow analyses as supervised
learning tasks to benchmark the representational power of
machine learning approaches. We selected a diverse set of
tasks that capture a mixture of both forward and backward
analyses, and control-, data-, and procedure-sensitive anal-
yses. Full details of the analyses are provided in Appendix
A. These particular data flow analyses can already be per-
fectly solved by non-ML techniques. Here, we use them to
benchmark the capabilities of machine learning techniques.

5.1. The DEEPDATAFLOW Dataset

We assembled a 256M-line corpus of LLVM-IR files from
a variety of sources and produced labeled datasets using
five traditional data flow analyses: control reachability,
dominators, data dependencies, liveness, and subexpres-
sions (Cummins, 2020b). Each of the 15.4M analysis ex-
amples consists of an input graph in which a single vertex
is annotated as the root node for analysis, and an output
graph in which each vertex is annotated with a binary label
corresponding to its value once the data flow analysis has
completed (Fig. 4). A 3:1:1 ratio is used to divide the exam-
ples for the five problems into training, validation, and test
instances. When formulated as supervised learning tasks,
data flow analyses exhibit a strong class imbalance. A triv-
ial baseline is to always predict true, which achieves an F1

of 0.073. For further details see Appendix B.

5.2. Models

We evaluate the effectiveness of our approach against two
contrasting state-of-the-art approaches for learning over
programs: one sequential model and one other graph
model.

(I) Sequential Model inst2vec (Ben-Nun et al., 2018)
sequentially processes the IR statements of a program to
perform whole-program classification. An IR is tokenized

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations

(a) REACHABILITY (b) DOMINANCE (c) DATADEP (d) LIVENESS

+ + - + + -

(e) SUBEXPRESSIONS

Figure 4: Example input-output graphs for each of the five DEEPDATAFLOW tasks. A single vertex is randomly selected
from the input graph as the starting point for computing analysis results, indicated using the vertex selector (blue node).
Each vertex in the output graph is annotated with a binary value after the analysis has completed. As a supervised clas-
sification task, the goal is to predict the output vertex labels given an input graph. These small graphs are for illustrative
purposes, the average DEEPDATAFLOW graph contains 581 vertices and 1,051 edges.

and then mapped into a sequence of pre-trained 200 di-
mensional embedding vectors which are processed by an
LSTM. The final state of the LSTM is fed through a two-
layer fully connected neural network to produce a clas-
sification of the full sequence. We extend this approach
by concatenating to the input sequence a one-hot token-
selector to indicate the starting point for analysis. Then,
we feed the LSTM state through a fully connected layer
after every token, producing a prediction for each instruc-
tion of the IR. We use the same model parameters as in the
original work.

(II) Graph Models We use the model design outlined in
Section 4 with two input representations: CDFG (Brauck-
mann et al., 2020), and PROGRAML. For both approaches
we use 32 dimensional embeddings initialized randomly,
as in Brauckmann et al. (2020). Input vertex-selectors, en-
coded as binary one-hot vectors, are used to mark the start-
ing point for analyses and are concatenated to the initial
embeddings. For CDFG, we use the vocabulary described
in Brauckmann et al. (2020). For PROGRAML, we derive
the vocabulary from the training set.

Message Passing Neural Networks typically use a small
number of propagation steps out of practical consideration
for time and space efficiency (Gilmer et al., 2017; Brauck-
mann et al., 2020). In contrast, data flow analyses iterate
until a fixed point is reached. In this work we iterate for a
fixed number T of message passing steps and exclude from
the training and validation sets graphs for which a tradi-
tional implementation of the analysis task requires greater
than T iterations to solve. We set T = 30 for training in
all experiments and trained a model per task. Once trained,
we evaluate model inference using different T values to ac-
commodate programs which required a greater number of
steps to compute the ground truth. See Appendix C.2. for
training details.

5.3. Evaluation

First, we evaluate the effectiveness of each vocabulary at
representing unseen programs. Then we evaluate model

performance on increasingly large subsets of the DEEP-
DATAFLOW (DDF) test sets.

Vocabulary Coverage Each of the three approaches uses
a vocabulary to produce embeddings that describe the in-
structions and operands of a program. inst2vec uses a vo-
cabulary of 8,565 LLVM-IR statements (where a statement
is an instruction and its operands) with identifiers and liter-
als stripped. CDFG uses the 75 LLVM instruction opcodes.
For PROGRAML we derive a vocabulary on a set of train-
ing graphs that represents instructions and data types sepa-
rately. Table 1 compares the coverage of these vocabularies
as a percentage of the vertices in the test graphs that can
be described using that vocabulary. PROGRAML provides
2.1× the coverage on unseen programs as state-of-the-art
approaches, the best of which can represent fewer than half
of the graph vertices of unseen programs.

DDF-30: Testing on Limited Problem Size We initially
limit our testing to the subset of each task’s test set which
can be solved using a traditional analysis implementation
in ≤ 30 steps, denoted DDF-30. This matches the T =
30 message passing iterations used in computing the graph
models’ final states to ensure that a learned model, if it has
successfully approximated the mechanism of an analysis,
has sufficient message passing iterations to solve each test
input. Table 2 summarizes the performance of inst2vec,
CDFG, and PROGRAML.

The relational representation of our approach shows excel-
lent performance across all of the tasks. CDFG, which also
captures control-flow, achieves comparable performance
on the REACHABILITY and DOMINANCE tasks. How-
ever, the lack of operand vertices, positional edges, and
data types renders poor performance on the SUBEXPRES-
SIONS task. Neither CDFG nor inst2vec representations
enable per-variable classification, so are incapable of the
DATADEP and LIVENESS tasks. To simplify comparison,
we exclude these two tasks from inst2vec and CDFG aggre-
gate scores. In spite of this, PROGRAML correctly labels
4.50× and 1.12×more vertices than the state-of-the-art ap-
proaches. The weakest PROGRAML performance is on the

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations

Vocabulary
Size

Vocabulary
Test Coverage

inst2vec 8,565 34.0%
CDFG 75 47.5%

PROGRAML 2,230 98.3%

Table 1: Vocabularies for
LLVM-IR.

Figure 5: F1 score on a 10k-graph validation set as a function of the number
of training graphs.

Analysis Example Optimization inst2vec CDFG PROGRAML
DDF-30 DDF-30 DDF-30 DDF-60 DDF

Reachability Dead Code
Elimination

Precision 0.105 1.000 0.998 0.997 0.996
Recall 0.007 0.996 0.998 0.998 0.917

F1 0.012 0.998 0.998 0.997 0.943
Dominance Global Code Motion Precision 0.053 0.999 1.000 0.983 0.066

Recall 0.002 1.000 1.000 1.000 0.950
F1 0.004 0.999 1.000 0.991 0.123

DataDep Instruction Scheduling Precision — — 0.998 0.992 0.987
Recall — — 0.997 0.996 0.949

F1 — — 0.997 0.993 0.965
Liveness Register Allocation Precision — — 0.962 0.931 0.476

Recall — — 0.916 0.955 0.925
F1 — — 0.937 0.939 0.625

Subexpressions Global Common
Subexpression
Elimination

Precision 0.000 0.139 0.997 0.954 0.938
Recall 0.000 0.005 0.996 0.999 0.992

F1 0.000 0.009 0.996 0.967 0.959

Table 2: Data flow analysis results. For the restricted subset DDF-30 PROGRAML obtains strong results. Results on the
full dataset (DDF) highlight the scalability challenges of MPNNs.

LIVENESS task. When model performance is considered as
a function of the number of training graphs, shown in Fig-
ure 5, we see that the performance of PROGRAML quickly
converges towards near-perfect F1 scores on a holdout val-
idation set for all tasks except LIVENESS, where the model
is still improving at the end of training. This suggests esti-
mating the transfer (message) and meet (update) operators
of this backwards analysis poses a greater challenge for the
network, and may benefit from further training.

DDF-60: Generalizing to Larger Problems The DDF-
30 set excludes 28.7% of DEEPDATAFLOW graphs which
require more than 30 steps to compute ground truth la-
bels. To test whether these learned models can generalize
to solve larger problems, we used the models we trained at
T = 30 but double the number of inference message pass-
ing steps to T = 60 and repeated the tests on all graphs
which require ≤ 60 analysis steps (excluding 19.6%). The
results of this experiment, denoted DDF-60, are shown in
Table 2. We observe that performance is consistent on this
larger problem set, demonstrating that PROGRAML mod-
els can generalize to problems larger than those they were
trained on. The results indicate that an approximate fixed-

point algorithm is learned by the model, a critical feature
for enabling practical machine learning over programs.

DDF: Scalability Challenges Finally, we test the analy-
sis models that were trained for T = 30 message passing
iterations on all DEEPDATAFLOW graphs, shown in Ta-
ble 2 as DDF. We use T = 200 inference message pass-
ing iterations to test the limits of stability and generaliza-
tion of current graph neural networks, irrespective of the
number of steps required to compute ground truth labels,
whereas 9.6% of DDF graphs require more than 200 steps
to compute. Therefore, this experiment highlights two of
the challenges in the formulation of data flow analysis in an
MPNN framework: first, that using a fixed number of mes-
sage passing iterations across each and every edge leads to
unnecessary work for problems that can be solved in fewer
iterations or by propagating only along a dynamic subset of
the edges at each timestep (the maximum number of steps
required by a graph in DDF is 28,727). Secondly, models
that compute correct results for a graph when processed for
an appropriate number of steps may prove unstable when
processed for an excessively large number of steps. In
Table 2 we see substantial degradations of model perfor-

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations

mance in line with these two challenges. DOMINANCE
and LIVENESS show reductions in precision as the mod-
els over-approximate and have a large number of false pos-
itives. REACHABILITY and DATADEP, in contrast, show
drops in recall as the fixed T = 200 iterations is insufficient
to propagate the signal to the edges of large problems.

MPNNs do not scale in the way that we should like for large
programs. A part of this, we believe, is that using a generic
MPNN system is wasteful. Ordinary data flow engines pro-
cess nodes in a particular order (usually reverse post or-
der) and are naturally able to identify that a fixed point
has been reached. We believe that dynamically-sparse mes-
sage passing strategies and an adaptive number of iterations
could address these scalability challenges, which we will
pursue in future work.

6. Downstream Tasks
In the previous section we focus on data flow analysis as
a benchmark for the capabilities of machine learning for
compiler analysis. For the analyses considered, non-ML
techniques achieve perfect scores. In this section we ap-
ply PROGRAML to two downstream data flow tasks for
which non-ML techniques fail: predicting heterogeneous
compute device mappings and algorithm classification. In
both domains PROGRAML outperforms prior graph-based
and sequence-based representations, reducing test error by
1.20× and 1.35×, respectively. Finally, we ablate every
component of our representation and summarize the con-
tribution of each.

6.1. Heterogeneous Device Mapping

We apply our methodology to the challenging domain
of heterogeneous compute device mapping. Given an
OpenCL kernel and a choice of two devices to run it on
(CPU or GPU), the task is to predict the device which will
provide the best performance. This problem has received
significant prior attention, with previous approaches using
both hand-engineered features (Grewe et al., 2013) and se-
quential models (Ben-Nun et al., 2018; Cummins et al.,
2017a). We use the OPENCL DEVMAP dataset (Cummins
et al., 2017a), which provides 680 labeled CPU/GPU in-
stances derived from 256 OpenCL kernels sourced from
seven benchmark suites on two combinations of CPU/GPU
hardware, AMD and NVIDIA. cf. Appendix D.1. in sup-
plementary materials for details.

The performance of PROGRAML and baseline models is
shown in Table 3. As can be seen, PROGRAML outper-
forms prior works. We set new state-of-the-art F1 scores of
0.88 and 0.80.

AMD NVIDIA
Error [%] Error [%]

Static Mapping 41.2 43.1
DeepTune 28.1 39.0
DeepTuneIR 26.2 31.6
inst2vec 19.7 21.5
PROGRAML 13.4 20.0

Table 3: Predicting heterogeneous compute device map-
ping.

Error [%] Relative [%]

TBCNN 6.00 +77.5
NCC 5.17 +53.0
XFG w. inst2vec vocab 4.56 +34.9
XFG 4.29 +26.9
PROGRAML 3.38 -

(a) Comparison to state-of-the-art.

Error [%] Relative [%]

No vocab 3.70 +9.5
inst2vec vocab 3.78 +11.8
No control edges 3.88 +14.8
No data edges 7.76 +129.6
No call edges 3.88 +14.8
No backward edges 4.16 +23.1
No edge positions 3.43 +1.5

(b) PROGRAML ablations.

Table 4: Algorithm classification comparison to state-of-
the-art, and ablations.

6.2. Algorithm Classification

We apply our approach to the task of classifying algorithms
from unlabeled implementations. We use the Mou et al.
(2016) dataset. It contains implementations of 104 different
algorithms that were submitted to a judge system. All sam-
ples were written by students in higher education. There
are around 500 samples per algorithm. We compile them
with different combinations of optimization flags to gener-
ate a dataset of overall 240k samples, as in Ben-Nun et al.
(2018). Approximately 10,000 files are held out each as
development and test sets. cf. Appendix D.2. for details.

Table 4a compares the test error of our method against prior
works, where we set a new state-of-the-art.

Ablation Studies We ablate the PROGRAML represen-
tation in Table 4b. Every component of our representa-
tion contributes positively to performance. We note that
structure alone (No vocab) is sufficient to outperform prior
work, suggesting that algorithm classification is a prob-
lem that lends itself especially well to judging the power
of the representation structure, since most algorithms are
well-defined independent of implementation details, such
as data types. However, the choice of vocabulary is im-
portant. Replacing the PROGRAML vocabulary with that

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations

of a prior approach (inst2vec vocab (Ben-Nun et al., 2018))
degrades performance. The greatest contribution to the per-
formance of PROGRAML on this task is data flow edges.
Backward edges (Li et al., 2015), which are required for
reasoning about backward data flow analyses, provide the
second greatest contribution. These results highlight the
importance of data flow analysis for improving program
reasoning through machine learning.

7. Conclusions
The evolution of ML for compilers requires more expres-
sive representations. We show that current techniques can-
not reason about simple data flows which are at the core
of all compilers. We present PROGRAML, a graph-based
representation for programs derived from compiler IRs that
accurately captures the semantics of a program’s state-
ments and the relations between them. We are releasing
the DEEPDATAFLOW dataset as a community benchmark
for evaluating approaches to learning over programs. PRO-
GRAML and DEEPDATAFLOW open up new directions for
research towards more flexible and useful program analy-
sis. PROGRAML outperforms the state-of-the-art, but is
limited by scalability issues imposed by MPNNs. In high-
lighting the limitations of our approach we wish to expedite
future research to address key challenges that are faced in
the domain of program analysis. As future work, we will
investigate how MPNNs could be improved to learn effi-
cient and stable fixed-point algorithms, regardless of input
graph size.

Acknowledgments
This project received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
program (grant agreements DAPP, No. 678880, DEEP-
SEA, No. 955606, and MAELSTROM, No. 955513).
T.B.N. is supported by the Swiss National Science Foun-
dation (Ambizione Project No. 185778).

References
Allamanis, M. Learning Natural Coding Conventions. PhD

thesis, University of Edinburgh, 2016.

Allamanis, M., Brockschmidt, M., and Khademi, M.
Learning to Represent Programs with Graphs. In ICLR,
2017.

Allamanis, M., Barr, E. T., Devanbu, P., and Sutton, C. A
Survey of Machine Learning for Big Code and Natural-
ness. ACM Computing Surveys, 51(4), 2018.

Alon, U., Zilberstein, M., Levy, O., and Yahav, E.
code2vec: Learning Distributed Representations of

Code. In Symposium on Principles of Programming Lan-
guages (POPL), 2018a.

Alon, U., Zilberstein, M., Levy, O., and Yahav, E. A Gen-
eral Path-Based Representation for Predicting Program
Properties. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI).
ACM, 2018b.

Ashouri, A. H., Killian, W., Cavazos, J., Palermo, G., and
Silvano, C. A Survey on Compiler Autotuning using Ma-
chine Learning. ACM Computing Surveys, 51(5), 2018.

Barchi, F., Urgese, G., Macii, E., and Acquaviva, A.
Code Mapping in Heterogeneous Platforms Using Deep
Learning and LLVM-IR. In DAC. ACM, 2019.

Battaglia, P., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez,
A., Zambaldi, V., Malinowski, M., Tacchetti, A., Ra-
poso, D., Santoro, A., Faulkner, R., Gulcehre, C., Song,
F., Ballard, A., Gilmer, J., Dahl, G., Vaswani, A., Allen,
K., Nash, C., Langston, V., Dyer, C., Heess, N., Wier-
stra, D., Kohli, P., Botvinick, M., Vinyals, O., Li, Y., and
Pascanu, R. Relational Inductive Biases, Deep Learning,
and Graph Networks. arXiv:1806.01261, 2018.

Ben-Nun, T., Jakobovits, A. S., and Hoefler, T. Neural
Code Comprehension: A Learnable Representation of
Code Semantics. In NeurIPS, 2018.

Bielik, P., Raychev, V., and Vechev, M. Learning a Static
Analyzer from Data. In CAV, 2017.

Brauckmann, A., Ertel, S., Goens, A., and Castrillon, J.
Compiler-Based Graph Representations for Deep Learn-
ing Models of Code. In CC, 2020.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. In Empirical Methods in
Natural Language Processing, 2014.

Cooper, K. D. and Torczon, L. Engineering a Compiler.
Elsevier, 2012.

Cooper, K. D., Harvey, T. J., and Kennedy, K. Iterative
Data-flow Analysis, Revisited. Technical report, Depart-
ment of Computer Science, Rice University, 2004.

Cummins, C. Deep Learning for Compilers. PhD thesis,
University of Edinburgh, 2020a.

Cummins, C. DeepDataFlow. Zenodo, June 2020b.
URL https://doi.org/10.5281/zenodo.
4247595.

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations

Cummins, C., Petoumenos, P., Wang, Z., and Leather, H.
End-to-end Deep Learning of Optimization Heuristics.
In PACT. IEEE, 2017a.

Cummins, C., Petoumenos, P., Wang, Z., and Leather, H.
Synthesizing benchmarks for predictive modeling. In
CGO. IEEE, 2017b.

Dam, H. K., Grundy, J., Kim, T., and Kim, C. A
Deep Tree-Based Model for Software Defect Prediction.
arXiv:1802.00921, 2018.

Ferrante, J., Ottenstein, K. J., and Warren, J. D. The Pro-
gram Dependence Graph and Its Use in Optimization.
TOPLAS, 9(3), 1987.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and
Dauphin, Y. N. Convolutional Sequence to Sequence
Learning. In ICML. PMLR, 2017.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural Message Passing for Quantum Chem-
istry. In ICML. PMLR, 2017.

Grewe, D., Wang, Z., and O’Boyle, M. F. P. Portable Map-
ping of Data Parallel Programs to OpenCL for Hetero-
geneous Systems. In CGO. IEEE, 2013.

Haj-Ali, A., Ahmed, N. K., Willke, T., Shao, S., Asanovic,
K., and Stoica, I. NeuroVectorizer: End-to-End Vector-
ization with Deep Reinforcement Learning. CGO, 2020.

Kam, J. B. and Ullman, J. D. Global Data Flow Analysis
and Iterative Algorithms. JACM, 1976.

Kam, J. B. and Ullman, J. D. Monotone Data Flow Analy-
sis Frameworks. Acta Informatica, 7(3), 1977.

Kanade, A., Maniatis, P., Balakrishnan, G., and Shi,
K. Learning and Evaluating Contextual Embedding of
Source Code. In ICML, 2020.

Keerthy S, V., Aggarwal, R., Jain, S., Desarkar, M. S.,
Upadrasta, R., and Spkant, Y. N. IR2Vec: A Flow Analy-
sis based Scalable Infrastructure for Program Encodings.
arXiv:1909.06228, 2019.

Kildall, G. A. A Unified Approach to Global Program Op-
timization. In POPL, 1973.

Leather, H. and Cummins, C. Machine learning in compil-
ers: Past, present and future. In FDL. IEEE, 2020.

Li, L., Gu, C., Dullien, T., Vinyals, O., and Kohli, P. Graph
Matching Networks for Learning the Similarity of Graph
Structured Objects. In ICML. PMLR, 2019.

Li, Y., Zemel, R., Brockscmidt, M., and Tarlow, D. Gated
Graph Sequence Neural Networks. arXiv:1511.05493,
2015.

Mendis, C., Yang, C., Pu, Y., Amarasinghe, S., and
Michael, C. Compiler auto-vectorization with imitation
learning. In NeurIPS, 2019.

Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen, R.,
Zhou, Y., Kumar, N., Norouzi, M., Bengio, S., and Dean,
J. Device Placement Optimization with Reinforcement
Learning. In ICML, 2017.

Mou, L., Li, G., Zhang, L., Wang, T., and Jin, Z. Convo-
lutional Neural Networks over Tree Structures for Pro-
gramming Language Processing. In AAAI, 2016.

Raychev, V., Vechev, M., and Krause, A. Predicting Pro-
gram Properties from "Big Code". In POPL, 2015.

Shi, Z., Swersky, K., Tarlow, D., Ranganathan, P., and
Hashemi, M. Learning Execution through Neural Code
Fusion. In ICLR, 2020.

Si, X., Dai, H., Raghothaman, M., Naik, M., and Song, L.
Learning Loop Invariants for Program Verification. In
NeurIPS, 2018.

Steiner, B., Cummins, C., He, H., and Leather, H. Value
learning for throughput optimization of deep learning
workloads. MLSys, 2021.

Tai, K. S., Socher, R., and Manning, C. D. Improved
Semantic Representations From Tree-Structured Long
Short-Term Memory Networks. arXiv:1503.00075,
2015.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion Is All You Need. In NIPS, 2017.

Wang, K. and Su, Z. Blended, precise semantic program
embeddings. In PLDI, 2020.

Yin, P., Neubig, G., Allamanis, M., Brockschmidt, M.,
and Gaunt, A. L. Learning to Represent Edits.
arXiv:1810.13337, 2018.

Ziwei, Z., Cui, P., and Zhu, W. Deep Learning on Graphs:
A Survey. TKDE, 2020.

PROGRAML: A Graph-based Program Representation for Data Flow Analysis
and Compiler Optimizations Appendices

A. Data Flow Definitions
This section provides the definitions of the five analysis
tasks used in this paper to evaluate the representational
power of deep learning over programs. We chose a diverse
set of analysis tasks to capture a mixture of both forward
and backward analyses, and control-, data-, and procedure-
sensitive analyses.

(I) REACHABILITY: Reachable Instructions Control
reachability is a fundamental compiler analysis which de-
termines the set of points in a program that can be reached
from a particular starting point. Given succ(n), which re-
turns the control successors of an instruction n, the set of
reachable instructions starting at root n can be found using
forward analysis:

Reachable(n) = {n}
⋃

p∈succ(n)

Reachable(p)

(II) DOMINANCE: Instruction Dominance Instruction
n dominates statement m if every control-flow path the
from the program entry n0 to m passes through n. Like
reachability, this analysis only requires propagation of
control-flow, but unlike reachability, the set of dominator
instructions are typically constructed through analysis of a
program’s reverse control-flow graph (Lengauer & Tarjan,
1979; Blazy et al., 2015):

Dom(n) = {n} ∪

 ⋂
p∈pred(n)

Dom(p)

Where pred(n) returns the control predecessors of instruc-
tion n. We formulate the DOMINANCE problem as: Given
a root instruction vertex n, label all vertices m where
n ∈ Dom(m).

(III) DATADEP: Data Dependencies The data depen-
dencies of a variable v is the set of predecessor instructions
that must be evaluated to produce v. Computing data de-
pendencies requires traversing the reverse data-flow graph:

DataDep(n) = defs(n) ∪

 ⋃
p∈defs(n)

DataDep(p)

Where defs(n) returns the instructions that produce the
operands of n.

(IV) LIVENESS Live-out variables A variable v is live-
out of statement n if there exists some path from n to a
statement that uses v, without redefining it. Given uses(n),
which returns the operand variables of n, and defs(n),
which returns defined variables, the live-out variables can
be computed forwards using:

LiveOut(n) =
⋃

s∈succ(n)

uses(s) ∪
(
LiveOut(s)− defs(s)

)
(V) Global Common Subexpressions The identification
of common subexpressions is an important analysis for
optimization. For compiler IRs we define a subexpres-
sion as an instruction and its operands, ordered by either
their position (for non-commutative operations), or lexico-
graphically (for commutative operations). We thus formu-
late the common subexpression problem as: Given an in-
struction (which forms part of a subexpression), label any
other instructions in the program which compute the same
subexpression. This is an inter-procedural analysis, though
operands must obey their scope. Common subexpressions
are typically identified using available expression analysis:

Avail(n) = uses(n) ∪

 ⋂
p∈pred(n)

Avail(p)

− defs(n)

Where uses(n) return the expressions used by instruction
n, and defs(n) returns the expressions defined by n.

B. DEEPDATAFLOW Dataset
The DEEPDATAFLOW dataset comprises: 461k LLVM-IR
files assembled from a range of sources, PROGRAML rep-
resentations of each of the IRs, and 15.4M sets of labeled
graphs for the five data flow analyses described in the previ-
ous section, totaling 8.5B classification labels. The dataset
is publicly available (Cummins, 2020).

Programs We assembled a 256M-line corpus of real-
world LLVM-IRs from a variety of sources, summarized in
Table 1. We selected popular open source software projects
that cover a diverse range of domains and disciplines, aug-
mented by uncategorized code mined from popular GitHub
projects using the methodology described by Cummins
et al. (2017b). Our corpus comprises five source languages
(C, C++, Fortran, OpenCL, and Swift) covering a range of

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations Appendices

domains from functional to imperative, high-level to accel-
erators. The software covers a broad range of disciplines
from compilers and operating systems to traditional bench-
marks, machine learning systems, and unclassified code
downloaded from popular open source repositories.

PROGRAML Graphs We implemented PROGRAML
construction as an llvm::ModulePass using LLVM
version 10.0.0 and generated a graph representation of each
of the LLVM-IRs. PROGRAML construction takes an av-
erage of 10.72ms per file. Our corpus of unlabeled graphs
totals 268M vertices and 485M edges, with an average of
581 vertices and 1,051 edges per graph. The maximum
edge position is 355 (a large switch statement found in a
TensorFlow compute kernel).

Data Flow Labels We produced labeled graph instances
from the unlabeled corpus by computing ground truth la-
bels for each of the analysis tasks described in Section A
using a traditional analysis implementation. For each of
the five tasks, and for every unlabeled graph in the corpus,
we produce n labeled graphs by selecting unique source
vertices v0 ∈ V , where n is proportional to the size of the
graph:

n = min

(⌈
|V |
10

⌉
, 10

)

Each example in the dataset consists of an input graph in
which the source vertex is indicated using the vertex selec-
tor, and an output graph with the ground truth labels used
for training or for evaluating the accuracy of model predic-
tions. For every example we produce, we also record the
number of steps that the iterative analysis required to com-
pute the labels. We use this value to produce subsets of the
dataset to test problems of different sizes, shown in Table 2.

We divided the datasets randomly using a 3:1:1 ratio for
training, validation, and test instances. The same random
allocation of instances was used for each of the five tasks.
Where multiple examples were derived from a single IR,
examples derived from the same IR were allocated to the
same split.

As binary classification tasks, data flow analyses display
strong class imbalances as only a small fraction of a pro-
gram graph is typically relevant to computing the result set
of an analysis. On the DDF test sets, an accuracy of 86.92%
can be achieved by always predicting the negative class.
For this reason we report only binary precision, recall, and
F1 scores with respect to the positive class when reporting
model performance on DEEPDATAFLOW tasks.

%15 = load i32, i32* %nian, align 4, !tbaa !1
%rem38 = and i32 %15, 3
%rem11 = srem i32 %15, 100

LLVM-IR

Tokenized

Embeddings

…

…

5000 vocabulary indices,
padded & truncated

5000 x 200
inst2vec embeddings

num_segments
1-hot “selector” vector

Auxiliary Inputs

5000 x (200+2)
concatenated vectors

Model inputs

LSTM

num_segments x 2
1-hot outputs
130 params

Model outputs

Fully-connected

⌢

t1 t2 t3 t5000

⌢ ⌢ ⌢

…

LSTM

Figure 1: Extending inst2vec (Ben-Nun et al., 2018) to per-
form per-instruction classification of LLVM-IR. The_ op-
erator denotes vector concatenation.

C. Data Flow Experiments: Supplementary
Details

This section provides additional details for the experiments
presented in Section 5.

C.1. Models

(I) Sequential Model The inst2vec model consists of
619,650 trainable parameters in the configuration outlined
in Figure 1. The model, implemented in TensorFlow, uses
the same parameters as in the original work: 2× 64 dimen-
sional LSTM layers followed by a 64 dimensional dense
layer and the final 2 dimensional output layer. Sequences
are padded and truncated to 5k tokens and processed in
batches of 64.

(II) Graph Models For CDFG and PROGRAML ap-
proaches we use the same model architecture. The model,
implemented in PyTorch, consists of a customized GGNN
with 87,070 trainable parameters. Batches are imple-
mented as disconnected graphs that are constructed to en-
able efficient processing of graphs of differing size in par-
allel without padding. We use a combined batch size of
10, 000 vertices. If a single graph contains more than
10, 000 vertices, it is processed on its own.

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations Appendices

Language Domain IR files IR lines

BLAS 3.8.0 Fortran Scientific Computing 300 345,613
GitHub C Various 38,109 74,230,264

OpenCL 5,224 9,772,858
Swift 4,386 4,586,161

Linux 4.19 C Operating Systems 13,418 41,904,310
NPB (Bailey et al., 1991) C Benchmarks 122 255,626
Cummins et al. (2017a) OpenCL Benchmarks 256 149,779
OpenCV 3.4.0 C++ Computer Vision 432 2,275,466
POJ-104 (Mou et al., 2016) C++ Standard Algorithms 397,032 104,762,024
Tensorflow (Abadi et al., 2016) C++ Machine learning 1,903 18,152,361

Total 461,182 256,434,462

Table 1: The DEEPDATAFLOW LLVM-IR corpus.

DDF-30 DDF-60 DDF-200 DDF

Max. data flow step count 30 60 200 28,727
#. classification labels 6,038,709,880 6,758,353,737 7,638,510,145 8,623,030,254

#. graphs (3:1:1 train/val/test) 10,951,533 12,354,299 13,872,294 15,359,619
Ratio of full test set 71.3% 80.4% 90.3% 100%

Table 2: Characterization of DEEPDATAFLOW subsets.

C.2. Experimental Setup

Training Details and Parameters All models were
trained in an end-to-end fashion with the Adam opti-
mizer (Kingma & Ba, 2015) using the default configuration
and a learning rate of 1 ·10−3 for the LSTMs and 2.5 ·10−4
for the GGNNs. We trained the models on 1M training
graphs, evaluating on a fixed 10k validation set at 10k inter-
vals for the first 50k training graphs, and at 100k intervals
thereafter. The checkpoint with the greatest validation F1

score is used for testing.

Runtimes All experiments were conducted on shared
machines equipped with an NVIDIA GTX 1080 GPU,
32GB of RAM, mechanical hard drives, and server-grade
Intel Xeon processors. Figure 3 provides measurements of
the average runtimes of each approach across the five DDF-
30 tasks. In our implementation, we find training and test-
ing to be I/O bound as programs are processed faster than
loading many small files from disk. In particular, CDFG
performance suffers relative to PROGRAML as the conver-
sion from PROGRAML to CDFG representations is per-
formed on-demand. For validation, inputs are loaded once
into system memory and re-used, so the measured time pro-
vides a more accurate estimate of processing requirements.

D. Downstream Tasks: Supplementary
Details

This section provides additional details for the experiments
present in Section 6.

D.1. Heterogeneous Compute Device Mapping

Datasets The OPENCL DEVMAP dataset comprises 256
OpenCL kernels from two combinations of CPU/GPU
pairs. The AMD set uses an Intel Core i7-3820 CPU and
AMD Tahiti 7970 GPU; the NVIDIA set uses an Intel Core
i7-3820 CPU and an NVIDIA GTX 970 GPU. Each dataset
consists of 680 labeled examples derived from the 256
unique kernels by varying dynamic inputs.

Models We compare PROGRAML with four approaches:
First, with a static baseline that selects the most-frequently
optimal device for each dataset (CPU for AMD, GPU
for NVIDIA). Second, with DeepTune (Cummins et al.,
2017a), which is a sequential LSTM model at the OpenCL
source level. Third, to isolate the impact of transitioning
from OpenCL source to LLVM-IR, we evaluate against a
new DeepTuneIR model, which adapts DeepTune to us-
ing tokenized sequences of LLVM-IR as input instead of
OpenCL tokens. Finally, we compare against the state-of-
the-art approach inst2vec (Ben-Nun et al., 2018), which
replaces the OpenCL tokenizer with a sequence of 200-
dimensional embeddings, pre-trained on a large corpus of
LLVM-IR using a skip-gram model. PROGRAML itself
uses the GGNN adaptation as described in the paper. We
adapted the readout head to produce a single classification
label for each graph, rather than per-vertex classifications,
by aggregating over the final iterated vertex states. We also
included the available auxiliary input features of the DE-
VMAP dataset. The auxiliary features are concatenated to
the features extracted by the GGNN before classification
following the methodology of Cummins et al. (2017a).

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations Appendices

Train time Test time Train time/graph Val time/graph Test time/graph

inst2vec 10h52m 1h33m 45ms 3ms 36ms
CDFG 13h14m 3h27m 64ms 1ms 62ms

PROGRAML 7h21m 1h39m 26ms 3ms 24ms

Table 3: Average training and inference times on DDF-30 tasks

The experimental results in this section come from an ear-
lier development iteration of PROGRAML which deviates
from the method described in the main paper in the way
in which it produces initial vertex embeddings. Instead of
deriving a textual representation of instructions and data
types to produce a vocabulary, the vocabulary used for the
DEVMAP experiment is that of inst2vec (Ben-Nun et al.,
2018), where variables and constants are all represented by
a single additional embedding vector. The poor vocabu-
lary coverage achieved by using inst2vec motivated us to
provide the improved vocabulary implementation that we
describe in the main paper (see Table 1).

Training Details and Parameters All neural networks
are regularized with dropout (Hinton et al., 2012) for gen-
eralization and Batch Normalization (Ioffe & Szegedy,
2015) in order to be uniformly applicable to vastly different
scales of auxiliary input features. We used 10-fold cross-
validation with rotating 80/10/10 splits by training on 80%
of the data and selecting the model with the highest vali-
dation accuracy, setting aside 1/10th of the training data to
use for validation. We trained each model for 300 epochs
and selected the epoch with the greatest validation accuracy
for testing. Baseline models were trained with hyperparam-
eters from the original works. For the PROGRAML results
we used 6 layers in the GGNN corresponding to 6 timesteps
of message propagation, while sharing parameters between
even and odd layers to introduce additional regularization
of the weights. We ran a sweep of basic hyperparame-
ters which led us to use the pre-trained inst2vec statement
embeddings (Ben-Nun et al., 2018) and to exclude the use
of position representations. Both of these hyperparameter
choices help generalization by reducing the complexity of
the model. This is not surprising in light of the fact that the
dataset only contains 680 samples derived from 256 unique
programs. PROGRAML was trained with the Adam opti-
mizer with default parameters, a learning rate of 10−3 and
a batch size of 18,000 nodes (resulting in ca. 12000 itera-
tion steps of the optimizer). For the PROGRAML result, we
repeat the automated sweep for all hyperparameter config-
urations and picked the configuration with the best average
validation performance. Performance on the unseen tenth
of the data is reported.

D.2. Algorithm Classification

Dataset We use the POJ-104 dataset (Mou et al., 2016).
It contains implementations of 104 different algorithms that
were submitted to a judge system. All programs were writ-
ten by students in higher education. The dataset has around
500 samples per algorithm. We compile them with differ-
ent combinations of optimization flags to generate a dataset
of overall 240k samples, as in Ben-Nun et al. (2018). Ap-
proximately 10,000 files are held out each as a development
and test set.

Models We compare with tree-based convolutional
neural networks (TBCNN) (Mou et al., 2016) and
inst2vec (Ben-Nun et al., 2018). We used author-provided
parameters for the baseline models. For PROGRAML we
used 4 layers in the GGNN corresponding to 8 timesteps.
To further test the expressive power of the graph-based
representation against the tree-based (TBCNN) and se-
quential (inst2vec) prior work, we additionally compare
against graph-based baselines based on XFG (Ben-Nun
et al., 2018).

To better understand the qualitative aspects of replacing a
graph-based representation that captures program seman-
tics like Contextual Flow Graphs (XFG) (Ben-Nun et al.,
2018) with the more complete PROGRAML representation,
we adapted a GGNN (Li et al., 2015) to directly predict al-
gorithm classes from XFG representations of the programs.
In contrast to this, Ben-Nun et al. (2018) used XFG only
to generate statement contexts for use in skip-gram pre-
training. Here, we lift this graphical representation and
make it accessible to a deep neural network directly, as op-
posed to the structure-less sequential approach in the orig-
inal work (inst2vec).

Training Details and Parameters All models were
trained with the AdamW (Loshchilov & Hutter, 2019) op-
timizer with learning rate 2.5 · 10−4, β1 = 0.9, β2 =
0.999, ε = 10−8 for 80 epochs. Dropout regularization
is employed on the graph states with a rate of 0.2.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kud-
lur, M., Levenberg, J., Monga, R., Moore, S., Murray,
D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P.,

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations Appendices

Wicke, M., Yu, Y., and Zheng, X. TensorFlow: A Sys-
tem for Large-scale Machine Learning. In OSDI, 2016.

Bailey, D. H., Barszcz, E., Barton, J., Browning, D., Carter,
R., Dagum, L., Fatoohi, R., Fineberg, S., Frederickson,
P., Lasinski, T., Schreiber, R., Simon, H., Venkatakrish-
nan, V., and Weeratunga, S. The NAS Parallel Bench-
marks. IJHPCA, 5(3), 1991.

Ben-Nun, T., Jakobovits, A. S., and Hoefler, T. Neural
Code Comprehension: A Learnable Representation of
Code Semantics. In NeurIPS, 2018.

Blazy, S., Demange, D., and Pichardie, D. Validating Dom-
inator Trees for a Fast, Verified Dominance Test. In ITP,
2015.

Cummins, C. DeepDataFlow. Zenodo, June 2020.
URL https://doi.org/10.5281/zenodo.
4247595.

Cummins, C., Petoumenos, P., Wang, Z., and Leather, H.
End-to-end Deep Learning of Optimization Heuristics.
In PACT. IEEE, 2017a.

Cummins, C., Petoumenos, P., Zang, W., and Leather, H.
Synthesizing Benchmarks for Predictive Modeling. In
CGO. IEEE, 2017b.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. R. Improving Neural Net-
works by Preventing Co-adaptation of Feature Detectors.
arXiv:1207.0580, 2012.

Ioffe, S. and Szegedy, C. Batch Normalization: Acceler-
ating Deep Network Training by Reducing Internal Co-
variate Shift. In ICML. PMLR, 2015.

Kingma, D. P. and Ba, J. L. Adam: a Method for Stochastic
Optimization. ICLR, 2015.

Lengauer, T. and Tarjan, R. E. A Fast Algorithm for Find-
ing Dominators in a Flow Graph. TOPLAS, 1(1), 1979.

Li, Y., Zemel, R., Brockscmidt, M., and Tarlow, D. Gated
Graph Sequence Neural Networks. arXiv:1511.05493,
2015.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In ICLR, 2019.

Mou, L., Li, G., Zhang, L., Wang, T., and Jin, Z. Convo-
lutional Neural Networks over Tree Structures for Pro-
gramming Language Processing. In AAAI, 2016.

