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Abstract—Writing optimising compilers is difficult. The
range of programs that may be presented to the compiler
is huge and the systems on which they run are complex,
heterogeneous, non-deterministic, and constantly changing.
The space of possible optimisations is also vast, making it very
hard for compiler writers to design heuristics that take all of
these considerations into account. As a result, many compiler
optimisations are out of date or poorly tuned.

Near the turn of the century it was first shown how com-
pilers could be made to automatically search the optimisation
space, producing programs far better optimised than previously
possible, and without the need for compiler writers to worry
about architecture or program specifics. The searches, though,
were slow, so in the years that followed, machine learning
was developed to learn heuristics from the results of previous
searches so that thereafter the search could be avoided and
much of the benefit could be gained in a single shot.

In this paper we will give a retrospective of machine learning
in compiler optimisation from its earliest inception, through
some of the works that set themselves apart, to today’s deep
learning, finishing with our vision of the field’s future.

Index Terms—machine learning, compilers.

I. Introduction
Machine learning in compilers has been around for more

than two decades. It is now a burgeoning field. This paper
looks back at where the field started, covers some of the
stand out works over the years, and then presents our
vision for the future. We add to two earlier surveys, [1],
[2], offering additional perspectives on the field. First, we
begin with the precursor to machine learning in compilers,
directly searching the optimisation space with iterative
compilation.

II. Iterative Compilation
Developers have known since they first used optimising

compilers that the compiler does not always choose the
best options. They would try different compiler command
lines, either in an ad hoc fashion or more rigorously
by searching. Even simple techniques, like exhaustively
searching for the best tiling factors for matrix multipli-
cation, could yield considerable benefits. Eventually, this
practice would be named iterative compilation in Europe
or adaptive compilation or auto-tuning in the US.

The idea is straightforward: define a space of opti-
misation strategies, such as unrolling factors, tilings, or
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Fig. 1. Iterative Compilation: a search technique explores a space of
compilation strategies, continually compiling, executing and profiling
to find the best performing strategy.

complete command lines, then use a search technique to
find the best one. The search evaluates each strategy by
compiling the program and running it with representative
inputs enough times to estimate the measure of interest
(typically performance). This process is shown in Figure 1.
Unlike many compiler heuristics, iterative compilation is
blind to the platform, easily adapts to changes, and is
based on evidence, not belief. The potential gains are huge,
[3] found speedups of up to 2.23× over many data sets.

The paper that first coined the term iterative com-
pilation was [4], in which they show how the search
space for one problem is both non-linear and different
across architectures. They used a simple grid search, but
what they were trying to demonstrate was: first, that any
heuristic was going to be difficult for humans to derive;
second, that a new heuristic would be needed for each
architecture; and third, that the benefits of selecting the
right optimisation include considerable performance gain.

There have been many iterative compilation works.
Each targets some different heuristic or applies a dif-
ferent search technique. The use of genetic algorithms
is common [5]–[7], but random search [8] and greedy
approaches [9] feature also. Optimisation targets include
phase ordering [7], [10], code size [6], compiler flags [11],
and many others. Libraries, such as ATLAS [12] and
SPIRAL [13], auto tune on installation. PetaBricks [14]
and LIFT [15] are among some of the works that expand
the search space to include algorithmic choices.
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Fig. 2. Feature vectors are designed by compiler experts who decide
what information will be most helpful when deciding the best value
for the target heuristic.

The high cost of iterative compilation has been ad-
dressed by statistical techniques [16]. Frameworks to
support iterative compilation exist, such as Collective
Tuning [17], OpenTuner [18], and CLTune [19].

III. Machine Learning

Although iterative compilation can improve program
performance to a remarkable degree, the search, which
must be repeated for every new program and might require
thousands of compilations and executions, is so time-
consuming as to be impractical for all but a few specialised
use cases. Early pioneers began to look to supervised
machine learning to get the same benefits as iterative
compilation but in a single compilation.

The principle is relatively straightforward. Training pro-
grams are iteratively compiled to find the best compilation
strategy for each. For example, if the optimisation is
loop unrolling, then iterative compilation will find the
best unroll factor for each loop in a number of training
benchmarks. A compiler writer decides what information
summarises the programs in a way that may be useful
in deciding which compilation strategy to apply to any
particular program. For loop unrolling, this might be a
vector of values, such as the loop’s trip count, the number
of instructions in the loop, the dependency depth, and
so forth. These pairs of summary vectors and desired
strategies found by iterative compilation become training
data for a supervised machine learner. The summary data
are called feature vectors. The output of the learner is
a model that can be used, given the features of a new,
unseen program, to predict the best compilation strategy
or heuristic value. The model can then be inserted into
the compiler, replacing whatever human-built heuristics
existed previously. Moreover, should there be any changes
to the architecture, operating system, the rest of the
compiler, or the target application domain, then the
training data can simply be regenerated in the new
environment and machine-learned heuristic retuned on
that. These steps are shown in figures 2, 3 and 4.

The earliest example we can find is [20] which used a
neural network for branch prediction, both in hardware
and in compiler optimisations. Since then, many different
compiler optimisations have been targeted, each working

...

...

Examples
per benchmark

Fe
a
tu

re
s

Best heuristic
value

Machine
Learning

Tool

Predictive
Model

Fig. 3. A supervised machine learning tool creates a predictive model
from training examples.
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Fig. 4. In production, the predictive model replaces a human
constructed heuristic. Features are calculated for a new program
and the predicts the best heuristic value.

at a different granularity. Many learn command line
options for whole programs or compilation units [8], [21].
Others consider individual heuristics, such as loop un-
rolling [22], [23], instruction scheduling [24], inlining [25],
data partitioning [26], or thread coarsening [27]. Dozens of
different heuristics have been examined. A series of works
used genetic programming1 to learn heuristics [28]–[30].

Perhaps one of the more well known works was Mile-
postGCC [21]. Milepost brought together the many nec-
essary tools to do complete machine learning in compilers
experiments. These tools included the basic iterative
compilation, simple static program features, and so forth
to enable a modest range of experiments to be undertaken.
The work was featured on the extremely popular slashdot
website, leading to widespread attention for a while.

An interesting work [8] employed a hybrid approach.
They used machine learning, not to directly predict the
best optimisation, but rather to predict which part of
the search space would be profitable for further iterative
compilation. Their model determines which points in
the space are likely within 5% of the optimal. Iterative
compilation then searched that reduced space, lowering
the cost of iterative compilation and reducing the burden
on the machine learning to get the prediction correct.

A. Fitting into the ML Mould

The examples previously cited learn the heuristic di-
rectly. Often this is predicting some best category, such
as loop unroll factor or whether to inline a function. Not
all problems fit so neatly, and when it is not clear how
to represent the heuristic values as a category then they

1Conflating genetic programming with machine learning is a good
way to get in a row with machine learning experts, as one author
has found out to his cost.



instead require more careful consideration for how to fit
them into a machine learning paradigm.

Instruction scheduling, for example, requires permuting
instructions to improve their performance. Rather than
learning permutations of instructions, [31] and [30] learn
priority functions that compare two instructions and de-
termine which should come first. This neatly sidesteps the
permutation issue, as the ordering is generated implicitly.

In [32], it is similarly not obvious how the problem will
be mapped to machine learning. The input problems are
parallel streaming task graphs where each node represents
some computation that is fed along edges to the next
computation. The goal is to allocate the tasks to threads
to reduce communication overhead while also improving
parallelism and throughput. The approach taken in the
paper again avoids having to directly learn the heuristic.
Instead, they take an input graph, describe it using some
features, and then predict what the features of the ideal,
mapped version of that graph should be. This gives them
something to aim for and they then do a hill-climbing
search, randomly applying merge or split operations to
regions of the graph, aiming to approach the predicted
ideal. As the features are static, the mapped program need
not be run during the search, accelerating the search.

There are several works that predict the performance
of a program after applying a transformation [33]–[35]. In
these papers, the general idea is that, after learning how
the speedup of different parts of the optimisation space,
the space can be quickly searched for good optimisations
without having to re-execute the program.

B. Feature Design

Machine learning tools need features that describe the
data to the heuristic. For example, in loop unrolling
the number of times the loop will iterate may be a
good feature. The most common feature types have been
the frequencies of instruction types in the code to be
optimised [24], [27], [36], [37]. When learning branch
prediction routines, [20] used features about the type of
the branch and the successor instructions, whether the
branch is a loop and its direction. [30] learned hyper-block
formation policy with features including the maximum
dependency height of instructions in the path, the total
number of instructions, and whether there are memory
hazards. For register allocation, they use the number of
calls in the containing basic block, use-def counts and
estimates of spill costs and benefits. [24] also included
features about the number of garbage collection points in
a method and the possibility of causing a thread switch.
[37] summarise loops according to the number of memory
accesses, histograms of the different instruction types, and
iteration count estimates. [22], [31] use counts and lengths
of use-def chains, dependency heights, and latencies.

Sensible features are essential to learning good heuris-
tics. Conversely, whether the indentation was four spaces

or one tab is probably not a useful feature2. This example
is facetious but it is quite common for features to be
poorly designed. Features that are in essence random
relative to the problem at hand can confuse the machine
learner. It can find a coincidental correlation in the
random data and then attempt to learn that, ruining
the generality of the model. A feature may be a function
of other features, which is sometimes helpful when the
machine learner cannot combine information that way, and
sometimes not helpful when the redundant information
makes learning slower and less accurate. Features may
also be incompatible with the chosen machine learning
tool. For example, if features place different classes in
nonlinear regions, linear models cannot separate them.

Some solutions to this have been explored. [38] deter-
mined the distance between two programs by a graph
similarity metric. They begin by comparing the similarity
of basic blocks and then expand that outwards to measure
the similarity of CFGs. Armed with this distance metric,
they use a k nearest-neighbour model to find which
heuristic values to use. The downside of the approach is
the computational cost. Not only do many training graphs
need to be shipped with the compiler but the distance
calculation itself is expensive.

Genetic programming was used to search for features
in [23]. A grammar described a programming language of
features. A genetic program evolved individuals from the
feature language, searching to improve the accuracy of a
machine learning model for the target heuristic.

A similar technique to searching a feature space was
taken by [39] where the program was represented by facts
in the logic programming language, Datalog. From these
facts, they used a solver to infer rules matching program
facts to the desired heuristics.

Static compiler features have always been an issue. It
is impossible to know statically how often code will be
executed. Consider a function with two possible control
paths. Very different optimisation may be necessary,
depending on which path is taken. It may be that at
run time one path is rarely or never taken, but the static
compiler cannot know this. Many machine learning works
have used features like ‘the number of instruction in a
function’ and are oblivious even to static control flow, let
alone dynamic control flow. Performance counters have
been used as features to solve this [40]. The program is
run once, collecting counters for hot code. These counters
are used directly as features which now depend on the run
time behaviour, rather than purely static analyses.

C. Offline vs Online
Nearly all machine learning works for compilers do the

learning offline. Different compilation options are applied
to example programs in the lab. The reasons that the
learning is not done live on users’ machines are twofold.

2Although clearly, anyone using tabs is psychotic.



Firstly, it is quite common to find that, while looking
for the best optimisation strategy, the search touches on
appallingly bad strategies that can trash the program’s
performance. Users would be distinctly nonplussed to find
their programs running at half speed, even if it was in the
cause of eventually good performance. Secondly, in the
laboratory, the inputs are always the same so that for
deterministic programs the timings of any two runs are
directly comparable and it is easy to see which strategy
is superior. In a live system, the inputs are different each
time and, as there is no guarantee that two runs will do
the same amount of work, the difference in their run times
may be due to that, rather than better optimisation. Chen
[41], [42] shows how much input data can affect the best
optimisation choices.

[43] identified stable phases in a program execution
during which performance comparisons could be made.
They then used multi-versioning to select different com-
piled versions to improve performance. Mars [44] proposes
using IPC for online adaptation. During the learning
phase, competing versions of a hot function are executed,
each for the same amount of time. The one with the
highest number of retired instructions is selected for use.
[45], [46] have used user inputs to perform adaptation in
distributed data centers. Each compilation worker receives
a subset of the input data set on which to evaluate a
small set of optimization settings. The best such setting
from each round is used for subsequent executions of
the same code. The best-found compilation strategy is
then refined over time, by testing new settings and re-
evaluating old ones on new data sets. This approach only
works well with MapReduce-like workloads, since it relies
on the framework for repeating the same computation
multiple times without causing side-effects. [47] solves
some of the online problems for iterative compilation only.
They capture a memory snapshot as a hot function is
being executed live. The snapshot is recreated offline and
compilation strategies are searched. This enables tuning
specifically for each user while ensuring the user does not
suffer slow performance during the search.

IV. Deep Learning

The advent of deep learning has begun to pervade
every discipline and compilers are no exception. Deep
learning means using very large neural networks with
many, or ‘deep’, layers. Previously, these large networks
were infeasible to train, but processing power is now
up to the task. What has changed by these advances
is that large, deep neural nets can scale up to much
larger training data sizes and produce much more detailed
models that can learn functions with an ease that might
previously have seemed magical. But, the game-changer is
that whereas before the choice of features was so crucial,
it is now possible to feed in raw data and the deep learner
will make sense of it.

The first such work was [48]. They parsed input pro-
grams as source token streams and then used a deep
neural network to directly predict from that what the
right heuristic value should be for some optimisations in
OpenCL. They made use of an existing technology that
had had great success in natural language processing called
long short term memory networks (LSTM). These nets are
able to process streams of inputs and remember events
from arbitrarily far in the past. This enables them to
somewhat understand the structure of the program, such
as whether a variable has been declared in the past. The
results improved over prior, hand-built features.

The authors of [49] went further. They realised that
while a token representation is well suited to ambiguous
natural language, a graph-based representation would suit
programming languages better. They represent the in-
structions of a program as edges in a graph describing the
relationships between variables. They then learn vectors to
represent each instruction given its context in the graph. A
program can then be processed by LSTMs as a sequence of
these vectors. [50], [51] extends this idea so that the graph
structure is used not just to decide the vectors used to
represent instructions, but also how the learner processes
them. They use message passing neural networks where
each node has a state. That state is sent along edges to
each neighbour who merges that into its own state with
a learned function. After some rounds of message passing
a learned aggregation function gives the heuristic value.

Compared with machine learning of the past, deep
learners are hungry for data sets far larger than is typically
seen in compiler research. While in some cases this can be
mitigated by generating data synthetically [52], the pace
of innovation will increase considerably with an increase
in the availability of large labelled data sets.

V. Reinforcement Learning
Recently, reinforcement learning techniques have begun

to make inroads in compiler optimization. Reinforcement
learning concerns the process of iterative decision making
of an agent within an environment. The environment
provides a state, a set of actions, and a reward signal.
The goal of an agent is to select the sequence of actions,
one at a time, that will maximise cumulative reward.

A recent work [53] casts loop vectorization as a rein-
forcement learning problem. An environment represents a
program containing a single loop of interest, observations
are provided by summarizing paths through the program’s
AST, and reward is calculated using the runtime of the
program after applying a given vectorization choice. This
approach works well, but frames the problem in such a way
that an agent only makes a single decision per problem.
One of the key strengths of reinforcement learning is the
ability to decompose large problems into a sequence of
smaller discrete choices.

Many compiler optimization problems can be broken
down into a sequence of smaller decisions to fit the



Optimisation ServiceCompiler

Apply xform

Action 
type?End of 

optimizationC
od

eg
en

Language 
model

Agent

Available 
xforms

.c

Program

.exe

Executable

Optimization 
context

Change 
context

State
history

Action 
history

IR

xform context

Selected 
action

Fr
on

te
nd

Fig. 5. Our vision: A reinforcement learning system to control all
aspects of the compiler.

reinforcement learning mould. For example, in [54], the
full optimization pipeline of LLVM is presented as an en-
vironment in which a partially optimized program provides
the state, and an action is to select a single optimization
pass to run. The selected pass is then run, producing a
new state. Reward is provided by compiling the partially
optimized program and estimating the execution cycle
count. In this manner, the sequence of transformations
that produces the best performing code can be found
through incremental improvements.

[55] uses reinforcement learning to tackle a graph
partitioning problem, similar to [32]. In [55], the goal
is to find the optimal device placement for nodes in
large computation graphs so as to minimize runtime by
most efficiently exploiting the available hardware and
minimizing communication costs. An LSTM model is used
to produce a representation of a particular mapping by
feeding through a description of each operation’s type,
shape, and graph adjacencies. A second LSTM model
decodes this representation to provide a sequence of device
placements. A key challenge here is that these sequence-to-
sequence techniques struggle with long sequences, limiting
the scalability over large problems. This was addressed
in [56] using a hierarchical model to decompose large
graphs.

VI. The Future

We have been in this field for the last fifteen years3.
In that time we have seen it move from a niche academic
discipline, struggling for acceptance, to one which industry
is now scrambling to adopt.

So, where is this field going? What do we need to do
in the coming years? Optimisation is hard and it is only
going to get harder still. We need to remove humans from
all the heuristics in the compiler, and this will require
a coordinated, inter-disciplinary effort. We need compiler
writers to build modular compilers that support iterative
compilation and machine learning from the ground up. We
need machine learning researchers to invent models that
are suited to the recurrent, flow-based nature of programs.
And we need efficient learning strategies that can cope

3Well, the one of us with gray hair has, anyway.

with the huge number of choices, distant rewards, and
slow evaluations that apply to compiler optimisation.

A. Machine Learning Enabled Compilers
Modern compilers are multi-million line pieces of soft-

ware that can take years to master. Exposing the compiler
as a playground for experimentation will lower the barrier
to entry in compiler research, having a democratizing
effect. The first step is to enable every optimization choice
to be exposed through discoverable APIs with which
iterative search and machine learning can interact. For
example, when a loop may be unrolled, a search or machine
learning tool should be able to determine the range of
acceptable factors, make queries about the code and force
an unroll factor. Notice that this has to be dynamic, rather
than determined by some static list of unroll factors per
loop, since earlier choices change the loops that will be
considered. The compiler becomes a transformation and
query engine, capable of making decisions but not needing
to do so. There are a lot of choices made in compilers. In
compilers with extensible representations, like MLIR, the
challenge of enabling these APIs is greater than in more
locked down compilers. The software engineering effort to
make a truly machine learning-enabled compiler should
not be underestimated.

B. Deep Language Modelling at Scale
Before the advent of deep learning moving into com-

pilers the features that summarised programs were quite
basic. The token-based approach of [48], the embedding
of inst2vec [49], and the new graph representation of [50]
make great strides. These are not enough, however. The
more that the machine learning can understand the pro-
gram, the better. We need better program representations
and compiler-specific DNN architectures.

For instance, the most advanced representation [50]
does not represent variables, types, operand order, etc.
It is, therefore, incapable of replicating the common data-
flow analyses that litter any modern compiler – nor can
the others. Data-flow is fundamental to practically every
optimisation in the compiler. We need models that can
reason about the programs in at least as complex a fashion.
This will require better representations and graph RNNs
that match the data-flow pattern. We may never know
that we have the best formulation, but if what we have
cannot at least learn all the standard data-flow analyses,
then we do know it is not yet enough.

C. Reinforcement Learning Everything
With all of the compiler’s choices exposed and suitable

representation available, we can begin to replace every
heuristic in the compiler with a learned one. We see
reinforcement learning as the most promising approach.
Reinforcement learning seeks to choose actions that move
through a state space so that the final state has the great-
est associated reward. For compilers, the states are the IR



of a program, an action is a transformation of some part of
the IR, and the reward is the speedup when the program
is fully compiled and run on representative inputs. Such a
system would continually apply transformations until no
further speedup could be squeezed out.

Our proposed architecture is shown in Figure 5. The
compiler front-end processes the program source code as
normal, constructing an intermediate representation. It
chooses an initial optimisation context on which to focus
(most likely the main function). The context can be later
changed by the RL system, to look at optimisations on
other functions, or different granularities, such as loops,
basic blocks and individual instructions. For each context
the compiler can determine a set of applicable and valid
transformations which it passes to an RL agent to make its
choice. The IR is consumed by a language model which
compresses the IR into a finite state vector. The agent
chooses the next action based on the current state of the
program and a history of actions and states it has seen. An
action is either a transformation to apply to the current
focused context or a change of focus to another context.
The RL system will take actions that increase the likely
future reward which will be the speedup found by applying
the action sequence to the code. When the predicted future
reward is zero, then no further speedup can be gained by
additional actions and the process can stop, delivering the
final executable to the user.

This problem is larger than those to which reinforcement
learning is typically applied. The state space is huge –
programs come from a space of unbounded dimension.
The action space is also huge – hundreds or thousands of
transformations are possible, many can be parametrised,
and there are many places in the code to apply them.
Evaluating the reward is slow – the program must be
compiled to a binary and executed with representative
inputs enough time to give statistically sound timings.
All these challenges will need careful thought and vast
computing power to solve, but in the end, we will have
compilers that far exceed the quality of today’s.

VII. Conclusion
Machine learning is making a significant impact on

compiler optimisation and will continue to in coming years.
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