
DeepSmith: Compiler Fuzzing
through Deep Learning
Chris Cummins∗,1 Pavlos Petoumenos∗,
Alastair Murray†, Hugh Leather∗

∗University of Edinburgh, Scotland, UK
†Codeplay Software, Edinburgh, Scotland, UK

ABSTRACT

Random program generation — fuzzing — is an effective technique for discovering bugs in com-
pilers but successful fuzzers require extensive development effort for every language supported
by the compiler, and often leave parts of the language space untested.

We introduce DeepSmith, a novel machine learning approach to accelerating compiler valida-
tion through the inference of generative models for compiler inputs. Our approach infers a learned
model of the structure of real world code based on a large corpus of open source code. Then, it
uses the model to automatically generate tens of thousands of realistic programs. Finally, we apply
established differential testing methodologies on them to expose bugs in compilers.

We apply our approach to the OpenCL programming language, automatically exposing bugs in
OpenCL compilers with little effort on our side. In 1,000 hours of automated testing of commercial
and open source compilers, we discover bugs in all of them, submitting 67 bug reports.

Our test cases are on average two orders of magnitude smaller than the state-of-the-art, require
3.03× less time to generate and evaluate, and expose bugs which the state-of-the-art cannot. Our
random program generator, comprising only 500 lines of code, took 12 hours to train for OpenCL
versus the state-of-the-art taking 9 man months to port from a generator for C and 50,000 lines of
code.

KEYWORDS: Deep Learning; Compilers; Differential Testing; OpenCL

1 Introduction

Compilers should produce correct code for valid inputs, and meaningful errors for invalid
inputs. Properly testing compilers is hard — modern optimizing compilers are large and
complex programs, and their input space is huge. Random test case generation — fuzzing —
is a well established and effective method for identifying compiler bugs. When fuzzing, ran-
domly generated valid or semi-valid inputs are fed to the compiler. Any kind of unexpected
behavior, including crashes, freezes, or wrong binaries, indicates a compiler bug. Differen-
tial Testing can be used to find compiler bugs in generated binaries without the need for

1E-mail: c.cummins@ed.ac.uk
2This work was supported by the UK EPSRC under grants EP/L01503X/1 (CDT in Pervasive Parallelism), and
EP/P003915/1 (SUMMER).



an oracle by comparing program outputs across compilers. The generated code and a set of
inputs form a test case which is compiled and executed on multiple testbeds. If the test case
should have deterministic behavior, but the output differs between testbeds, then a bug has
been discovered.

CSmith, a state-of-the-art fuzzer which randomly enumerates programs from a subset of
the C programming language grammar, has been successfully used to identify hundreds of
bugs in C compilers, but developing such a fuzzer is a huge undertaking. CSmith was de-
veloped over the course of years, and consists of over 41k lines of handwritten C++ code. By
tightly coupling the generation logic with the target programming language, each feature of
the grammar must be painstakingly and expertly engineered for each new target language.
For example, lifting CSmith from C to OpenCL [3] — a superficially simple task — took 9
months and an additional 8k lines of code. Given the difficulty of defining a new grammar,
typically only a subset of the language is implemented.

We propose a fast, effective, and low effort approach to the generation of random pro-
grams for compiler fuzzing. Our methodology uses recent advances in deep learning to au-
tomatically construct probabilistic models of how humans write code, instead of painstak-
ingly defining a grammar to the same end. By training a deep neural network on a corpus of
handwritten code, it is able to infer both the syntax and semantics of the programming lan-
guage. Our approach essentially frames the generation of random programs as a language
modeling problem. This greatly simplifies and accelerates the process. The expressiveness
of the generated programs is limited only by what is contained in the corpus, not the devel-
oper’s expertise or available time. We make the following contributions:

• a novel, automatic, and fast approach for the generation of expressive random pro-
grams for compiler fuzzing. We infer programming language syntax, structure, and
use from real-world examples, not through an expert-defined grammar. Our system
needs two orders of magnitude less code than the state-of-the-art, and takes less than
a day to train;

• we discover a similar number of bugs as the state-of-the-art, but also find bugs which
prior work cannot, covering more components of the compiler;

• in modeling real handwritten code, our test cases are more interpretable than other
approaches. Average test case size is two orders of magnitude smaller than state-of-
the-art, without any expensive reduction process.

2 DeepSmith

DeepSmith3 is our open source framework for compiler fuzzing. Figure 1 provides a high-
level overview. The three key components of DeepSmith are: a generative model for random
programs, a test harness, and voting heuristics for differential testing.

Generative Model We treat the generation of compiler testing inputs as an unsupervised
machine learning task, employing state-of-the-art deep learning techniques to build models
for how humans write programs. To generate inputs for testing OpenCL compilers, we train
a Recurrent Neural Network on a corpus of handwritten code, assembled by mining 10k
OpenCL kernels from open source repositories on GitHub [2]. We used an oracle compiler

3DeepSmith available at: https://chriscummins.cc/deepsmith



Generative Model

Encoder

Neural Network

Synthesizer

Testbed 1

Test Harness

ResultsResultsResults

Voting Heuristics

ResultsResults
Anomalous 

Results

ResultsResultsCode Samples ResultsResultsParameters

ResultsResultsTest Cases

ResultsResults
Handwritten 
Programs

…

Testbed n

Test Harness

ResultsResultsResults

Figure 1: DeepSmith system overview.

Generation Execution

(a)

10­3

10­2

10­1

100

101

102

R
un

tim
e 

(s
)

a

abc

(b)

100

101

102

103

104

105

106

107

K
er

ne
l S

iz
e 

(b
yt

es
)

a
CLSmith DeepSmith

Figure 2: Comparison of runtimes (a) and test
case sizes (b) of DeepSmith and CLSmith [3].

3.6.2 3.7.1 3.8.1 3.9.1 4.0.1 5.0.0 Trunk
LLVM version

0.1%

1.0%

10.0%

C
ra

sh
 E

rr
or

 R
at

e 
(lo

g 
%

)

Figure 3: Crash rate of the Clang front-end
of every LLVM release in the past 24 months
compiling 75k DeepSmith kernels.

(LLVM 3.9) to statically check the source files, discarding files that are not well-formed.
This corpus, exceeding one million lines of code, is encoded using a hybrid keyword and
character level tokenizer [1]. Training the model on the OpenCL corpus took 12 hours using
a single NVIDIA Tesla P40. We provided the model with no prior knowledge of the structure
or syntax of a programming language. The trained network is sampled to generate new
programs. To generate a new program, the model is seeded with the start of a program, and
sampled token-by-token. A “bracket depth” counter is incremented or decremented upon
production of { or } tokens respectively, so that the end of the program can be detected and
sampling halted.

Test Harness We developed a harness to execute generated OpenCL programs. The har-
ness accepts an arbitrary OpenCL program, generates input data for it, and executes the
program on an OpenCL device. Unlike the generative model, this test harness is language-
specific and the design stems from domain knowledge. Still, it is a relatively simple proce-
dure, consisting of a few hundred lines of Python.

Voting Heuristics We employ established Differential Testing methodologies to expose
compiler defects. We look for test cases where there is a majority outcome – i.e. for which
some fraction of the testbeds behave the same – but some testbed deviates. We use the pres-
ence of the majority increasing the likelihood that there is a ‘correct’ behavior for the test
case. A series of heuristics detect common causes of undefined behavior and remove false
positives.



3 Evaluation

We compare our fuzzer to CLSmith [3], the state-of-the art OpenCL fuzzer. We conducted
2000 hours of automated testing across 10 OpenCL compilers (3 GPUs, 4 CPUs, a co-processor,
and an emulator). DeepSmith found bugs in all the compilers we tested — every compiler
crashed, and every compiler generated programs which either crash or silently compute the
wrong result. To date, we have submitted 67 bug reports to compiler vendors.

We found that DeepSmith is able to identify a broad range of defects, many of which CL-
Smith cannot. For example, a common pattern in OpenCL programs is to obtain the thread
identity and compare this against some fixed value to determine whether or not to complete
a unit of work (46% of OpenCL kernels on GitHub use this pattern). DeepSmith, having
modeled the frequency with which this occurs in real handwritten code, generates many
permutations of this pattern. And in doing so, exposed a bug in the optimizer of two Intel
compilers which causes the if branch of a DeepSmith-generated program to be erroneously
executed when the kernel is compiled with optimizations enabled. CLSmith does not permit
the thread identity to modify control flow, rendering such productions impossible.

Figure 2 compares the runtime and program sizes of the two approaches. DeepSmith test
cases are on average evaluated 3.03× faster than CLSmith (2.45×, and 4.46× for generation
and execution, respectively), and are two orders of magnitude smaller.

The Clang front-end to LLVM is commonly used in OpenCL drivers. This in turn causes
Clang-related defects to potentially affect multiple compilers. To evaluate the impact of
Clang, we used debug+assert builds of every LLVM release in the past 24 months to compile
75k DeepSmith test cases. Figure 3 shows that the crash rate of the Clang front-end is, for the
most part, steadily decreasing over time. The number of failing compiler crashes decreased
tenfold between 3.6.2 and 5.0.0. Notably, the current development trunk has the second low-
est crash rate, emphasizing that compiler validation is a moving target. Since LLVM will not
release unless their compiler passes their own extensive test suites, this also reinforces the
case for compiler fuzzing.

4 Conclusions

We present a novel tool for compiler fuzzing. By posing the generation of random programs
as an unsupervised machine learning problem, we dramatically reduce the cost and human
effort required to engineer a random program generator. Our implementation, DeepSmith,
has uncovered dozens of bugs in OpenCL implementations, including in parts of the com-
piler where current approaches are not able to. Our test cases are small, two orders of mag-
nitude shorter than the state-of-the-art, and easily interpretable.

References

[1] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. End-to-end Deep Learning of
Optimization Heuristics . In PACT. IEEE, 2017.

[2] C. Cummins, P. Petoumenos, W. Zang, and H. Leather. Synthesizing Benchmarks for
Predictive Modeling . In CGO. IEEE, 2017.

[3] C. Lidbury, A. Lascu, N. Chong, and A. Donaldson. Many-Core Compiler Fuzzing . In
PLDI, 2015.


	Introduction
	DeepSmith
	Evaluation
	Conclusions

