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Uncontentious statement:



High level 
programming is 

great!



So why do application 
programmers resort 
to writing low level 

code?
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How do we break 
the illusion?



High level code 
needs to be at least 
competitive with
low level
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low level (but faster would be nice)
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OpenCL workgroup size:
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OpenCL workgroup size:

Critical to performance.

Controls decomposition of 
threads.
Is a 2D parameter (rows x cols).



OpenCL workgroup size:

rows cols

performance



Examples





Same stencil! 
Different device!



Same device! 
Different stencil!





Choosing workgroup size 
depends on:

1. device
2. program
3. dataset



Let’s automate 
this!
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(iterative compilation)



BAD!



BAD!
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BAD!
Must be repeated for every new “x”

Takes a loooong time

device

program
dataset



Approach 2
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1 data point



Collect data points
Extract “features”
Train machine learning classifier

Extract “features”
Input to classifier



BETTER!
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BETTER!
Can make predictions on unseen “x”

Still takes a loooong time

device

program
dataset

Requires a lot of code



1. Reduce training costs
2. Reduce implementation costs
3. Minimise runtime overheads

Our wish list:



Our Approach …



OmniTune



1. Allows collaborative 
performance tuning
Reduce training costs ✓



2. Provides re-usable 
implementations
Reduce implementation costs ✓



3. Provides lightweight 
runtime interface
Minimise runtime overheads ✓



How does it work?
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Servers
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engine
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Clients

Target 
applications

Programs we 
want to tune
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ParamFeatures,
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Demonstration



Implementation:
Remote: AWS instance + MySQL

Server: standalone system daemon, 
decision tree classifier

Client: modified SkelCL stencil 
pattern



Remote

Servers

SkelCL … …

…DBUS

TCP/IP

2.5ms
RTT



Experimental Setup:
6 stencil benchmarks + synthetic.
7 different GPUs & CPUs.
4 dataset sizes.

Exhaustive search of workgroup size 
space for each



Results
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Conclusions



High level GPU code must compete 
with low level on performance

That means automating the kind of 
tuning which is typical of low level



We present a framework for doing this 
using machine learning

Demonstrated using SkelCL stencils

Achieves average 1.22x speedup over 
human expert



Details
in the 
paper!
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