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Uncontentious statement:
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How do we break
the illusion?



High level code
heeds to be at least
with

low level



High level code
needs to be at least
with
|OW |eve| (but faster would be nice)




Reasons for low level:
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Parameter tuning
for Algorithmic
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OpenCL workgroup stze:



Controls deco mposi’ciow of
threads.




Controls deco mposi’ciow of
threads.
s A 2P 'Pﬂ YAWLETEY (rows x cols).




Controls deco mposi’ciow of
threads.
s A 2P 'Pﬂ YAWLETEY (rows x cols).

Critieal to performance.
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Choosing workgroup stze
olepewols OW:
1. device

2. program
2. dataset




Let’'s automate
this!




Approach 1



Set a workgroup size
Execute and time program
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... (continue until done / bored)
Pick the best one you tried
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Takes a loooong time




Takes a loooong time
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Must be repeated for every new “x”
ole\/ice// \
dataset

Program




Approach 2



Set a workgroup size

Execute and time program

Set a workgroup size
Execute and time program

... (continue until done / bored)
Pick the best one you tried




Set a workgroup size

Execute and time program

Set a workgroup size
Execute and time program

1

... (continue until done / bored) J
Pick the best one you tried



Collect
Extract “features”
Train machine learning classifier

Extract “features”
Input to classifier



BEITTER!



Prog mm

BEITTER!




Can make predictions on unseen X

olevwe \
olataset

Program

BET IER!

Still takes a loooong time




Can make predictions on unseen x

ole\/we
olataset

Program

BET IER!

Still takes a loooong time
Requires a lot of code




Our wish list:

1. Reduce training costs
2. Reduce implementation costs
3. Minimise runtime overheads




Our Approach ...



OmniTune



1. Allows collaborative
performance tuning

Reduce training costs v




2. Provides re-usable
Implementations

Reduce implementation costs v




3. Provides lightweight
runtime interface

Minimise runtime overheads v




How does 1t work?
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Remote

Book-keeper

Manages and
stores training
data
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Autotuning
engine

Servers

Performs
machine learning
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Target
applications

Programs we
Clients want to tune
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Demonstration



Implementation:
Remote: AWS instance + MySQL

Server: standalone system daemon,
decision tree classifier

Client: modified SkelCL stencil
pattern






Experimental Setup:

6 stencil benchmarks + synthetic.
7 different GPUs & CPUs.
4 dataset sizes.

Exhaustive search of workgroup size
space for each
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Conclusions



High level GPU code must compete
with low level on performance

That means automating the kind of
tuning which is typical of low level



We present a framework for doing this
using machine learning

Demonstrated using SkelCL stencils

Achieves average 1.22x speedup over
human expert
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1onship between
o servers,

increases.

Algorithmic skeletons offer & golution 1o this this pro-
gmmnmbih’ly challenge bY raising the level of ahstraction.
This simplifies pzn‘z\llvl prngmmmiug. allowing developers
to focus on solving problems rather than coordinating par

The ph_\'s'\(‘z\\ limitations of microprocessor design have
forced the industry towards increasingly heterogeneous de-
signs 1O extract performance. This trend has not been
matched with adequate software tools, leading to a grow-
ing disparity between the availability of pz\rullc-\isn\ and the
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by prov iding high-level, reusable patterns of computation. This greatly Lnces the ch N D arallel progri . the same ster J 1€ pop
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task; skeleton authors must attempt 10 anticipate and tune allowing users l‘n strue t.nn eir pl-nj em ‘*f' ving logic = B between de regressors
for a wide Tange of architectures and use cases This results (|uvnl|:\ll_\'. while offloading the cognitive cost of p:u‘anv\ co-  fgroup si - S,
) ange = ok C i ordination to the <keleton library author. The rising pumber P sizes is : :
n imp\vuwmnl'ums that target the gt-m'ml case and cannot i ‘\“ X work ‘ i ‘ ‘ \ ‘ \ 5 l s a grid-like lure ey
. i Lol < aworks s y UYi B ar o 1 - i A~
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trates the demand for high level abstractions for GPGI | Yeific: up i 7
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tuning low level npthn'\:l,al'\un parameters. Auntotuning com- . P o T

bined with machine learning offers hrumb"\ng hv\'(mn\mm- p“"—"""""""m {1, 2] [he challenge 1% m.m:npl:umng p_onah\«-
benefits in these situations, but the high cost of training and p('l‘fnl"ll\i\llf'l; “cm““ the breadth of devices in the rapidly de-
lack of available tools limits the preu‘li('u\il_\' of autotuning veloping GPU and heterogeneot architectir® landscape:

for real world prngmmming. We believe that porfnrming of two dif-
autotuning at the level of the skeleton library can overcome owing that
nl‘- Ill (-ﬂ‘.h
te changes,

up sizes fol-
fedge clearly

these 1ssSues.
In this work, we present OmniTune — an extensible and
distributed framework for dynamic autotuning of optimiza- There are many factors — OF parameters which influence frameters,
tion parameters at runtime. OmniTune uses & client-server the behavior of ‘mmllol Programs. For example, setting the Vorkgroup
model with a flexible APl o support machine learning en- pumber of threads to launch for & p.‘u'l'u-u\ar algorithm. The lat can be
abled antotuning. Training data {s shared across @ network performance of pz\rz\\lvl programs is sensitive 10 the values ly 63% of
of cooperating systems, using @ collective ;\ppnw-h Lo per- of these parameters, and when tuning to maximize perfor-
formance tuning. mance, one size does not it all. The suitability of parame- hice both
We demonstrate the pr:-u'tk-:-\\il_\' of OmniTune in a case ter values depends on the program implement ation, the tar- gode are
study using the algorithmic skeleton hibrary SkelCL. BY get hardware, and the dataset that is up«mtvd upon. Iter- ¢ should
mnluuml'\r;\\ly tuning the workgroup size of OpenCL Stencil ative compilation and antotuning have been shown o help there is P})-h;._\-,.
skeleton kernels, we show that that static tuning Aacross in these cases by antomating the process of tuning parain- fequire- valu-
a vange of GPUs and programs can achieve only 26% of eter values O match individual execution environments (3). >?'"lillg
the optimal performance, while OmniTune achieves 02% However, there have been few attempts Lo develop general fiety of
of this maximuin, equating 10 an average 5.695% speedup. mechanisms for these techniques, and the time taken to de- fr-case
OmniTune achieves this without introducing & significant velop ad-hoc autotuning golutions and gather performance
runtime overhead, and enables pm'l:\\)h-. cross-device and data is often pruhihil'\\'vly expensive.
Ccross-program tuning. We believe that by embedding autotuning at the skeletal
level, it is pu.\\'ihh- to achieve performance with ;\lgm"n\nnic
1 \ . <keletons that is competitive with and in some Cases:
1. ntro¢ uction exceeds that of hand tuned \mm\\«l 'uup\c-m«-matinus
General purpose prngr:mnn'mg with GPUs has been shown which traditionally came at the cost of many man hours
Lo pm\'idv huge pm'ulh-\ throughput. but poses a significant of work from expert prngrz\muu'l.\' 1o develop.
prngrz\mming challenge, pequiring upp\i(-ulinn developers 1O [ncorporating antotuning into ulgnrillun'\(' skeleton li-
master an unfamiliar prugr:nnmiug model (such as pm\"\du\ braries has tWo kev benefits: first, it minimizes development
by CUDA or OpenCL) and architecture (SIMD with a multi- effort by requiring only a modification 10 the skeleton imple-
jevel memory hierarchy). As a result, GprGopu prugrmnmiug mentation rather than to every user program: and second,
is often considered beyond the realm of everyday develop- by targeting a library, it enables a broader and more sub-
ment. 1f steps are not taken to increase the accessibility of stantive range of performance data to be gnt\u-rwl than with
such p;\ra\\v\ism, the gap between potent jal and utilized per- ad-hoe tuning of individual Programs.
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