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Input stencil output
Multiple tndependent computations
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Input stencil output
Multiple (overlapping) MEMOYY ACCESSES
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Workgroup size affects

mapping to SIMD hardware.
device occupancy.
local memory utilisation.







What is the best workgroup size for ...

Gaussian blur, 512px x 512px,
floats, on:

1. AMD HD79907?
2. Nvidia GTX Titan?
3. Intel 17-38207?
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What is the best workgroup size for ...

Nvidia GTX 590, 4096 x 4096 elements
running:
1. Sobel edge detection?

2. Heat equation?
3. Game of life?
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What is the best workgroup size for ...

1. Intel 15-2430, game of life,
4096 x 40967

2. Nvidia GTX 690, threshold,
512 x 5127

3. Intel i7-3820, NMS, 512 x 5127?




What is the best workgroup size for ...

1. Intel 15-2430, game of life,
4096 x 40967

2. Nvidia GTX 690, threshold,
512 x 5127

3. Intel i7-3820, NMS, 512 x 5127?




does not




Choosing workgroup
Size depends on:

1. Device
2. Program
3. Dataset
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Optimisation
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Workgroup Size + Stencils

1. Non-linear, non-continuous
2. Device, program, dataset
3. Not all values are legal




Autotuning




Set a workgroup size
Execute and time program
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Execute and time program

Set a workgroup size
Execute and time program

... (continue until done / bored)
Pick the best one you tried
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Takes a loooong time
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Must be repeated for every new “x”
ole\/ice// \
dataset

Program




Let’s Improve



Set a workgroup size

Execute and time program
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Set a workgroup size

Execute and time program

Set a workgroup size
Execute and time program

1

... (continue until done / bored) J
Pick the best one you tried



Collect
Extract “features”
Train machine learning classifier

Extract “features”
Input to classifier












Questions:

1. What features do we need?
2. What programs do we train on?
3. How do we make predictions?
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2. Kernel
3. Dataset




2. Kernel
3. Dataset



How many compute units?
How much memOry?

Cache size? S} S

etc.
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2. Kernel
3. Dataset
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1. Device

3. Dataset
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How big is border region? - -~
What shape is 1t?
How many instructions?
» — §\What type of instructions?
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1. Device

3. Dataset
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2. Kernel



A_l4,

How big is the data?
What type is the input?
What type is the output?

sign exponent(8-bit) fraction (23-bit)
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2. Kernel



1. Device
2. Kernel
3. Dataset




Questions:

2. What programs do we train on?
3. How do we make predictions?



Questions:

1. What features do we need? v

3. How do we make predictions?



1. Learn by example
2. Learn by exploration




Use benchmark programs
Hope that they are representative

2. Learn by exploration



1. Learn by example
2. Learn by exploration




1. Learn by example

Create own benchmarks
Explore (the huge!) program space



Questions:

1. What features do we need? v

3. How do we make predictions?



Questions:

1. What features do we need? v
2. What programs do we train on? v



1. Classifier
2. Runtime Regressor
3. Speedup Regressor




2. Runtime Regressor
3. Speedup Regressor




Predict category (optimal workgroup
size) for scenario
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Fallback Handlers

1. Baseline
2. Random

3. Nearest Neighbour
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2. Runtime Regressor
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1. Classifier
2. Runtime Regressor
3. Speedup Regressor




1. Classifier

3. Speedup Regressor



Predict runtime of
program for
workgroup size

Search for lowest
runtime
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1. Classifier

3. Speedup Regressor



1. Classifier
2. Runtime Regressor
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1. Classifier
2. Runtime Regressor




Predict speedup of
workgroup size A

over B for program Y.
Search for highest —~ - -

speedup



1. Classifier
2. Runtime Regressor




1. Classifier
2. Runtime Regressor
3. Speedup Regressor




Questions:

1. What features do we need? v
2. What programs do we train on? v



Questions:

1. What features do we need? v
2. What programs do we train on? v
3. How do we make predictions? v



Experiment



Implementation
Modified SkelCL stencil pattern

Python server process for autotuning

5 classifiers, random forest regressor



Experimental Setup

6 stencil benchmarks + synthetic.
7 different GPUs & CPUs.
4 dataset sizes.

Exhaustive search of workgroup size
space for each
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Autotuning

Classification
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Autotuning

Regression
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Conclusions



Average 15x speedup best/worst
workgroup size

Setting workgroup size depends on
device, kernel, dataset

Static tuning achieves 26% of optimal
performance



We present three methodologies for
autotuning OpenCL workgroup size

Trade-offs between prediction cost and
training cost

Achieving average 1.22x speedup over
human expert, with increased reliability
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Abstract

Selecting an appropriate wor
for the performance of OpenCL ker
knowledge of the underlying hardware, t!
ing operated on, and the implemcnmtion of the kernel.
This makes portable performance of OpenCL programs
a challenging goal, si i ics and statically
chosen values fail to exploit
To address this, we propose the use of
enabled autotuning 1o automatically predi
sizes for stencil patterns on CPUs and multi-GPUs.
three methodologies for predicting work-
group sizes. The . 1o select the op-
timal workgroup si
methodologics employ the novel use of regressors for
ification by predicting the runtime of
and the relative performance of different work-
group sizes, respectively. We evaluate the effectivencss
of each technique in an empirical study of 429 combi-
nations of architecture, kernel. and dataset, comparing
an average of 620 different workgroup sizes for each. We
find that antotuning provides a median 3.79% speedup
over the best possible fixed workgroup size, achieving

04% of the maximum performance.

1. Introduction

gtencil codes have & variety of compumtionally demand-
from fluid dynamics to quantum mechanics. EF
re highly sought
al. demon-
strating the capability
lel stencil operations
of the OpenCL
gmmmnbilit.y of heterogenco
vcndor-indcpcndcnt layer of abstraction for data par-
allel prog‘ramming of CPUs, GPUs, DSPs. and other
devices [2). However achieving portable performance of
ask — OpenCL kernels are
underlying hardware, 1o
et that is op-
erated upon. This forces developers to laboriously hand
tune performance on a case-by-case basis, since simple
heuristics fail to exploi performance.

michel.steuwet@ed.ac.uk. h\eather@inf.ed.ac.uk

In this paper, We¢ demonstrate how machine learning-
enabled autotuning ess this issue for one such
optimisation parameter of Oper
workgroup size. The 2D optimisation space 0
i plex and non-linear, mak-
ing it analytical modelling. Successfully ap-
plying machine learning o such a space requires plen-
tiful training he careful gelection of features. and
appropriate i roach. The approaches
wes extracted from
the architecture data collected
from synthetic benchmarks to predict workgroup sizes
for unseen programs.

9. The SkelCL Stencil Pattern

Introduced in (3), SkelCL s an Algorithmic Skeleton li-
prary which provides OpenCL implemcmat.ions of data
parallel patterns for heterogeneous lelism using
CPUs and multi-GPUs. Figure 1 shows the components
of the SkelCL stencil pattern, which applies @ user-
provided custo ]

matrix. The va

its current value and the value of one oOr more neigh-
houring clements, called the horder region. The border
region describes @ rectangular region about each cell,
and is defined in terms of the number of cells in the
border region 1o the north, east. south, and west of each
cell. Where clements of & border region fall outside of
the matrix bounds, values are substituted from either
a predefined padding \alue, or the value of the nearest
cell within the matrix, determined bY the user.

When a SkelCL stencil pattern is executed, each
of the matrix clements are mapped to OpenCL work-
items; and this collection of work-items is divided into
workgroups for exec the target hardware. A
work-item reads the value of its corresponding matrix
clement and the surrounding elements defined by the
border region. Since the border regions
ing elements overlap, €
multiple times. Beca
size of the workgroup an
is allocated as & contiguous
greatly reduces the latency
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