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Abstract
The physical limitations of microprocessor design have forced the industry to-
wards increasingly heterogeneous architectures to extract performance. This
trend has not been matched with software tools to cope with such parallelism,
leading to a growing disparity between the levels of available performance and
the ability for application developers to exploit it.

Algorithmic skeletons simplify parallel programming by providing high-level,
reusable patterns of computation. Achieving performant skeleton implementa-
tions is a difficult task; developers must attempt to anticipate and tune for a
wide range of architectures and use cases. This results in implementations that
target the general case and cannot provide the performance advantages that are
gained from tuning low level optimisation parameters.

To address this, I present OmniTune — an extensible and distributed frame-
work for runtime autotuning of optimisation parameters. Targeting the work-
group size of OpenCL kernels, I demonstrate an implementation of OmniTune
for stencil codes on CPUs and multi-GPU systems. I show in a comprehensive
evaluation of 2.7× 105 test cases that simple heuristics cannot provide portable
performance across the range of architectures, kernels, and datasets which algo-
rithmic skeletons must target.

OmniTune uses procedurally generated synthetic benchmarks and machine
learning to predict workgroup sizes for unseen programs. In an evaluation of
429 combinations of programs, architectures, and datasets, with up to 7.3× 103

parameter values for each, OmniTune is able to achieve a median 94% of the avail-
able performance, providing a 1.33× speedup over the values selected by human
experts, without requiring any user intervention. This adaptive tuning provides a
median speedup of 3.79× (max 74.0×) over the best possible performance which
can be achieved without autotuning.
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Chapter 1

Introduction

Parallelism is increasingly seen as the only viable approach to maintaining con-
tinued performance improvements in a multicore world. Despite this, the adop-
tion of parallel programming practises has been slow and awkward, leading to a
growing disparity between the levels of available performance and the ability for
application developers to exploit it.

The multicore processors of modern devices offer many opportunities for paral-
lelism, but fully harnessing this processing power requires an intimate knowledge
of both the parallel programming semantics of the language and performance
characteristics of the underlying hardware. In recent years, general purpose pro-
gramming with GPUs promises even greater data parallel throughput, but is a
significantly greater challenge to tame, forcing developers to master an unfamiliar
programming model (such as provided by CUDA or OpenCL) and architecture
(SIMD with a multi-level memory hierarchy). As such, GPGPU programming is
often considered beyond the realm of all but the most expert of programmers. If
steps are not taken to increase the accessibility of such parallelism, this will only
serve to widen the gap between available and utilised performance as the core
counts of hardware continue to increase.

One possible solution for this programmability challenge comes in the form of
algorithmic skeletons, which offer to simplify parallel programming by raising the
level of abstraction so that developers can focus on solving problems, rather than
coordinating parallel resources. They achieve this by providing robust parallel
implementations of common patterns of computation which developers param-
eterise with their application-specific code. This greatly reduces the challenge
of parallel programming, allowing users to structure their problem solving logic

1



2 Chapter 1. Introduction

sequentially, while offloading the cognitive cost of parallel coordination to the
skeleton author.

1.1 Sacrificing Performance for Ease of Use

Unfortunately, the performance of parallel programs is often sensitive to low level
parameter values, and when tuning these values, one size cannot fit all. The per-
formance of parallel program parameters are sensitive to the underlying hardware,
to the program being executed, and even to the dataset that is operated upon.
This is especially problematic for algorithmic skeletons, as skeleton authors can-
not tune the performance of an implementation across the breadth of these three
dimensions, and this results in programs which forgo the performance advantages
that can be achieved with the low level tuning of hand written parallel code.

If the performance of algorithmic skeletons is to be competitive with that of
hand crafted parallel programs, then these skeletons must be capable of adapting
to their environments. The development of such autotuning software is an entire
research field itself — and understandably so: there is an irresistible appeal to the
idea of software which is capable of improving its own efficiency without the need
for human intervention. The unfortunate reality is that while these autotuning
systems share the unified goal of improving the performance of their respective
optimisation targets, the range of competing approaches and implementations
has resulted in a fragmented state in which no one system has been able to gain
the critical mass to achieve mainstream traction.

This is the first aim of this thesis: to tackle the issue of providing a unified
interface for autotuning which reduces the amount of redundant and overlapping
work needed to implement autotuning for different optimisation targets.

The second aim of this thesis is to explore techniques for predictive, ma-
chine learning-enabled autotuning for use in algorithmic skeletons. Typically,
autotuning using iterative compilation requires enumerating some portion of the
optimisation space for each program being tuned; however, the cost of such an
exploration is prohibitively expensive when summed across the broad range of
use cases targeted by algorithmic skeletons. As such, successfully autotuning
algorithmic skeletons will require a method for predicting the values of parame-
ters which will maximise performance, without the need for trial and error. To
succeed, such a method of tuning does not need to provide perfectly accurate pre-
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dictions, but simply sufficiently performant results so that, when combined with
the vast accessibility improvements offered by algorithmic skeletons, it provides
a convincing argument for algorithmic skeletons as the solution to the parallel
programmability crisis.

1.2 Contributions

The key contributions of this thesis are:

• The development of OmniTune — a novel and extensible framework for the
collaborative autotuning of optimisation parameters across the life cycle of
programs.

• The application of OmniTune for tuning of the SkelCL algorithmic skeleton
library. When tasked with predicting the workgroup sizes of stencil skele-
tons on both GPUs and CPUs, OmniTune achieves 94% of the available
performance, providing a median speedup of 1.33× over values predicted
by human experts, or 3.79× over the best possible statically chosen param-
eter values.

• The novel application of procedurally generated benchmark programs for
training machine learning-enabled autotuners. This reduces the cost of
training while increasing the size of the space which can be explored. The
effectiveness of this approach is demonstrated by testing the OmniTune
SkelCL autotuner trained using synthetic benchmarks against 68 configu-
rations of real world stencil kernels, achieving comparable autotuning per-
formance with that of cross-validation.

• An empirical evaluation of the performance of workgroup size to parame-
terise high-level parallel patterns. I enumerate the optimisation space of
workgroup sizes for SkelCL stencil kernels across 269813 test cases, demon-
strating an average performance loss of up to 15.14× if workgroup size is
not correctly tuned.

• A comparison of multiple approaches for runtime autotuning: using clas-
sifiers to predict optimal parameter values, using regressors to predict the
absolute runtime of programs, and using regressors to predict the relative
performance of different parameter values.
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(a) (b)

Figure 1.1: Workgroup size optimisation space of a stencil benchmark across devices:
(a) Intel CPU, (b) NVIDIA GPU. This shows that stencil performance is dependent
on properties of the underlying architecture, with different optimal workgroup sizes
(56×20 vs. 64×4) for the two devices shown.

1.3 Motivation

In this section I present the case for autotuning the workgroup size of SkelCL
stencil skeletons. Stencil workgroup sizes presents a two dimensional parameter
space, consisting of a number of rows and columns. It is constrained by properties
of both the stencil code and underlying architecture. For a detailed discussion of
the parameter space and experimental methodology, see Chapters 2 and 6.

By comparing the mean runtime of a stencil program using different work-
group sizes while keeping all other conditions constant, we can assess the relative
performance of different points in the optimisation space. Plotting this two di-
mensional optimisation space using a three dimensional bar chart provides a quick
visual overview of the optimisation space. The two horizontal axes are used to
represent the number of rows and columns in a workgroup, while the height of
each bar shows the performance of a program at that point in the space (higher
is better).

If the performance of workgroup sizes were not dependent on the execution
device, we would expect the relative performance of points in the optimisation
space to be consistent across devices. As shown in Figure 1.1, this is not the case,
with the optimisation space of the same benchmark on different devices being
radically different. Not only does the optimal workgroup size change between
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(a) (b)

Figure 1.2: Workgroup size optimisation space of two stencils on the same device.
Despite the underlying hardware being the same, the relative performance of work-
group sizes varies greatly between the two programs. The optimal workgroup sizes
are 128×2 and 256×4 respectively.

devices, but the performance of suboptimal workgroup sizes is equally dissimilar.
The optimisation space of 1.1a has a grid-like structure, with clear perfor-

mance advantages of workgroup sizes at multiples of 8 columns. A developer
specifically targeting this device would learn to select workgroup sizes which fol-
low this pattern. This domain specific knowledge does not transfer to the device
shown in 1.1b, where the relatively simple optimisation space is more amenable
to a stochastic hill climbing search.

Similarly, the optimisation space of two different stencils on the same device
is shown in 1.2, demonstrating that the optimisation space is dependent on the
program being executed.

The optimal workgroup size is different for each of the four examples, and
the difference between the maximum and minimum performance workgroup sizes
provides an average 37.0× speedup. The existing SkelCL stencil implementation
uses a statically chosen workgroup size of 32× 4, and this provides an average
of only 63% of the available performance when compared to the best workgroup
size for these four examples. Even for this small set of examples, static values
and simple heuristics cannot provide portable performance. The workgroup size
parameter is sensitive to factors outside the influence of the developers control,
such as the type of program, the data being operated on, and the execution device.
This makes portable performance tuning a difficult task, and it has traditionally
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been the responsibility to domain specialists to laboriously hand tune individual
programs to match the target problem and underlying hardware.

Given the important role that stencil codes play in many fields of computer sci-
ence and simulation, and the difficulties in selecting workgroup sizes for portable
performance, I believe that there is a compelling case for the development of an
autotuner which can accommodate for these differences of workgroup size perfor-
mance between devices and programs. It is my hypothesis that the performance of
algorithmic skeletons will be improved by developing an autotuner which consid-
ers dynamic features which cannot be determined at compile time. The premise is
that the optimisation spaces of algorithmic skeletons such as stencils are shaped
by features which can only be determined at runtime. Effective searching of these
spaces can only be performed by collecting empirical data rather than building
predictive models.

The ambition of this thesis is to demonstrate that, using machine learning,
we can develop predictive tuning systems which closely approach — and in some
cases, outperform — the kinds of ad-hoc hand tuning which traditionally came
at the cost of many man hours of work from expert programmers to develop.

1.4 Structure

The remainder of the document is structured as follows:

• Chapter 2 contains necessary background material, an introduction to the
SkelCL framework, and a description of the techniques used throughout the
thesis;

• Chapter 3 contains an exposition of relevant literature in the field of auto-
tuning and heterogeneous parallelism, contrasting the related research with
my own;

• Chapter 4 presents OmniTune, an extensible and distributed autotuner ca-
pable of predicting optimisation parameter values for unseen programs and
devices at runtime;

• Chapter 5 describes the application of OmniTune for selecting the work-
group size of SkelCL stencils;
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• Chapter 6 describes a comprehensive exploration of the workgroup size opti-
misation space for stencil skeletons, including the methodology for obtaining
performance data and experimental setup;

• Chapter 7 evaluates the effectiveness of OmniTune with respect to its accu-
racy, performance compared to human experts, and a cost benefit analysis
of autotuning;

• Chapter 8 contains concluding remarks, a critical evaluation of the pre-
sented work, and plans for future research.

1.5 Summary

This introductory chapter has outlined the need for higher levels of abstraction
for parallel programming and the difficulty that this provides for performance
tuning. It advocates the use of adaptive tuning for algorithmic skeletons, and
describes the contributions of this thesis towards this goal. In the next chapter,
I provide an overview of the techniques and methodology used in this thesis.





Chapter 2

Background

2.1 Introduction

This chapter provides a detailed though non-exhaustive description of the theory
and techniques used in this thesis. First is an overview of algorithmic skeletons,
GPGPU programming, and the combination of the two in SkelCL. Second is
an overview of the machine learning techniques used in this thesis, followed by a
description of the Statistical tools tools and methodologies used in the evaluation.

2.2 Algorithmic Skeletons

Introduced by Cole in 1989, algorithmic skeletons simplify the task of parallel
programming by abstracting common patterns of communication, providing par-
allel implementations of higher order functions [Col89]. The interfaces to generic
parallel algorithms exposed by algorithmic skeletons are parameterised by the
user with muscle functions that implement problem specific logic. The idea is
that this allows the user to focus on solving the problem at hand, affording greater
ease of use by automating the coordination of parallel resources.

2.2.1 Abstracting Task and Data Parallelism

Algorithmic skeletons are categorised as either data parallel or task parallel. In
data parallel skeletons, data are distributed across nodes for parallel processing,
where each parallel node executes the same code on a unique subset of the data.
Examples of data parallel algorithmic skeletons include map, zip, and reduce. The

9
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User
Program Compilation

Parallel 
Algorithms

Output DataExecute program

Algorithmic
Skeleton 

Framework

Compiled
Binary

LinkerAPI

Shared object file

Figure 2.1: Typical usage of a library based Algorithmic Skeleton Framework. Other
approaches to algorithmic skeletons involve embedding the API into the core language
itself, or using template and macro substitution to remove the need for linking with
a library.

data parallel operations provided by SkelCL are described in detail in Section 2.4.

Task parallel skeletons treat the data as a singular object and instead paral-
lelise the execution of multiple tasks. Tasks are assigned to threads, which can
communicate with each other by passing data between threads. Examples of task
parallel algorithmic skeletons include pipe, task farm, and for loops.

2.2.2 Algorithmic Skeleton Frameworks

Algorithmic Skeleton Frameworks (ASkFs) provide concrete parallel implemen-
tations of parallel patterns, which are parameterised by the user to generate
specific problem solving programs. The interfaces exposed by frameworks must
be sufficiently generic to allow users to express a range of problems.

Implementations of algorithmic skeletons abound, targeting a range of differ-
ent use cases and host languages. Notable examples include: eSkel [Ben+05],
Skandium [LP10], and FastFlow [Ald+11]. The most prevalent form of ASkF
is that of the standalone library which exposes a set of public APIs, shown in
Figure 2.1. See [Gon10] for a more exhaustive review of ASkFs in the research
literature.

In industry, Google’s MapReduce [DG08] and Intel’s Thread Building Blocks [Int]
have utilised a similar approach to abstracting the coordination of parallel re-
sources as in algorithmic skeletons, to great commercial success, although they
do not advertise themselves as such.
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2.3 GPGPU Programming

General purpose programming with graphics hardware is a nascent field, but has
shown to enable massive data parallel throughput by re-purposing the hardware
traditionally dedicated to the rendering of 3D graphics for generic computation.
This was enabled by hardware support for programmable shaders replacing the
fixed function graphics pipeline, and support for floating point operations in 2001.
Owens et al. provide a review of the first five years of general purpose computation
on graphics hardware in [Owe+06].

In the ensuing progress towards increasingly programmable graphics hard-
ware, two dominant programming models have emerged: CUDA and OpenCL,
which both abstract the graphics primitives of GPU hardware and provide a
platform for GPGPU programming. CUDA is a language developed by NVIDIA
for programming their GPUs using a proprietary SDK and API [Nvi07], while
OpenCL is a vendor-independent open standard based on a subset of the ISO C99
programming language, with implementations for devices from most major GPU
manufactures [SGS10]. Quantitative evaluations of the performance of CUDA
and OpenCL programs suggest that performance is comparable between the two
systems, although the wider range of target architectures for OpenCL means that
appropriate optimisations must be made by hand or by the compiler [FVS11;
Kom+10].

2.3.1 The OpenCL Programming Model

OpenCL is a parallel programming framework which targets CPUs, GPUs, and
other parallel processors such as Field-Programmable Gate Arrays. It provides
a set of APIs and a language (based on an extended subset of C) for controlling
heterogeneous compute devices from a central host. Programs written for these
devices are called kernels, and are compiled by platform-specific tool chains. At
runtime, an OpenCL platform is selected and a context object is created which ex-
poses access to each supported compute device through command queues. When a
kernel is executed, each unit of computation is referred to as a workitem, and these
workitems are grouped into workgroups. The sum of all workgroup dimensions
defines the global size. For GPUs, workgroups execute on the Single Instruction
Multiple Data (SIMD) processing units in lockstep. This is very different from
the behaviour of traditional CPUs, and can cause severe performance penalties
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Figure 2.2: The OpenCL memory model. The host communicates with each device
through transfers between global memory spaces. The capacity of each type of mem-
ory is dependent on the device hardware. In general, private memory is the fastest
and smallest, and global memory is the largest and slowest.

in the presence of flow control, as workitems must be stalled across divering flow
paths.

Memory Model

Unlike the flat model of CPUs, OpenCL uses a hierarchical memory model. The
host and each OpenCL device has a single global memory address space. Each
workgroup has a local memory space, and each workitem has a region of private
memory.

Workgroups cannot access the memory of neighbouring workgroups, nor can
workitems access the private memory of other workitems. OpenCL provides syn-
chronisation barriers to allow for communication between workitems within a
single workgroup via the local memory, but not global barriers. Memory trans-
fers between the host and devices occurs between global memory regions. In
the case of programming heterogeneous devices, these transfers must occur over
the connection bus between the CPU and device (e.g. PCIe for discrete GPUs),
which typically creates a performance bottleneck by introducing a performance
overhead to transfer data to the device for processing, then back to the device
afterwards. Direct transfers of data between devices is not supported, requiring
an intermediate transfer to the host memory.
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Performance Optimisations

The wide range of supported execution devices and differing standards-compliant
implementations makes portable performance tuning of OpenCL programs a diffi-
cult task [Rul+10], and the interactions between optimisations and the hardware
are complex and sometimes counter-intuitive [Ryo+08b].

The overhead introduced by memory transfers between host and compute
devices further complicates comparisons of OpenCL performance on different de-
vices. The conclusion of [GH11] is that this overhead can account for a 2× to
50× difference of GPU program runtime. In [Lee+10], Lee et al. present a per-
formance analysis of optimised throughput computing applications for GPUs and
CPUs. Of the 14 applications tested, they found GPU performance to be 0.7×
to 14.9× that of multi-threaded CPU code, with an average of only 2.5×. This
is much lower than the 100× to 1000× values reported by other studies, a fact
that they attribute to uneven comparison of optimised GPU code to unoptimised
CPU code, or vice versa. Lee et al. found that multithreading, cache blocking,
reordering of memory accesses and use of SIMD instructions to contribute most
to CPU performance. For GPUs, the most effective optimisations are reducing
synchronization costs, and exploiting local shared memory. In all cases, the pro-
grams were optimised and hand-tuned by programmers with expert knowledge of
the target architectures. It is unclear whether their performance results still hold
for subsequent generations of devices.

Despite the concerns of over-represented speedups, the potential for high per-
formance coupled with the complexity and low levels of abstraction provided by
OpenCL make it an ideal target for skeletal abstractions. SkelCL and SkePU are
two such examples which add a layer of abstraction above OpenCL and CUDA
respectively in order to simplify GPGPU programming [EK10].

2.4 High-Level GPU Programming with SkelCL

Introduced in [SKG11], SkelCL is an object oriented C++ library that provides
OpenCL implementations of data parallel algorithmic skeletons for heteroge-
neous parallelism using CPUs or multi-GPUs. SkelCL addresses the parallel
programmability challenge by allowing users to easily harness the power of GPUs
and CPUs for data parallel computing.
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The goal of SkelCL is to enable the transition towards higher-level program-
ming of GPUS, without requiring users to be intimately knowledgeable of the
concepts unique to OpenCL programming, such as the memory or execution
model [SKG12]. SkelCL has been shown to reduce programmer effort for devel-
oping real applications through the use of robust pattern implementations and
automated memory management, maintaining performance within 5% of that of
equivalent hand-written implementations in OpenCL [SG13a].

SkelCL skeletons are parameterised with muscle functions by the user, which
are compiled into OpenCL kernels for execution on device hardware. SkelCL
supports operations on one or two dimensional arrays of data, with the Vector and
Matrix container types transparently handling lazy transfers between host and
device memory, and supporting partitioning for multi-GPU execution [SG13b].
SkelCL is freely available and distributed under dual GPL and academic licenses1.

2.4.1 Pattern definitions

SkelCL provides six skeletons for data parallel operations: Map, Zip, Reduce,
Scan, AllPairs, and Stencil. The focus of this thesis is on tuning the Stencil
skeleton, but for the sake of completeness I provide here a brief overview of the
behaviour of all six patterns.

Map

The Map operation is a basic building block of data parallel algorithms. Given a
customising function f and a vector x of n elements, the Map operation applies
the function f to each element x1,x2, . . . ,xn, returning a vector of the same length:

Map(f, [x1,x2, . . . ,xn])→ [f(x1),f(x2), . . . ,f(xn)] (2.1)

The process is the same for an n×m matrix:

Map

f,

x11 · · · x1m
... . . . ...
xn1 · · · xnm


→


f(x11) · · · f(x1m)

... . . . ...
f(xn1) · · · f(xnm)

 (2.2)

Execution of the customising function can be parallelised as each element is pro-
cessed independently. There are no guarantees on execution ordering.

1http://skelcl.uni-muenster.de

http://skelcl.uni-muenster.de
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Zip

The Zip operation combines elements of containers pairwise. Given a binary
operator ⊕ and two vectors x and y of n elements each:

Zip(⊕, [x1,x2, . . . ,xn], [y1,y2, . . . ,yn])→ [x1⊕y1,x2⊕y2, . . . ,xn⊕yn] (2.3)

For two matrices of n×m elements each:

Zip

⊕,

x11 · · · x1m
... . . . ...
xn1 · · · xnm

 ,

y11 · · · y1m
... . . . ...
yn1 · · · ynm




→


x11⊕y11 · · · x1m⊕y1m

... . . . ...
xn1⊕yn1 · · · xnm⊕ynm


(2.4)

The Zip operation is parallelised in the same manner as Map.

Reduce

The Reduce operator combines all elements of an input vector and returns a
scalar. Given a binary operator ⊕, its identity i and a vector x of n elements:

Reduce(⊕,i, [x1,x2, . . . ,xn])→ x1⊕x2⊕ . . .⊕xn (2.5)

For a n×m matrix:

Reduce

⊕, i,

x11 · · · x1m
... . . . ...
xn1 · · · xnm


→ x11⊕x12⊕ . . .⊕xnm (2.6)

Reduction operates by recursively combining elements, storing intermediate re-
sults in fast local memory. No guarantee is made on execution ordering, so the
binary operator must be associative.

Scan

The Scan operator applies a binary function ⊕ to each member of an input array
x of n elements, such that element xi at the ith position is calculated by applying
the binary function to all elements x1,x2, . . .xi−1. For the first element xi, the
value is the identify i of the ⊕ operator:

Scan(⊕,i, [x1,x2, . . . ,xn])→ [i,x1,x1⊕x2, . . . ,x1⊕x2⊕ . . .⊕xn] (2.7)



16 Chapter 2. Background

The SkelCL scan implementation is heavily optimised to make use of local mem-
ory, based on the design from [HSO07].

AllPairs

The AllPairs skeleton is a specialised pattern for Matrix Matrix operations, intro-
duced in [Ste+14]. Given two matrices of size n×d and n×m, a binary operator
⊕:

AllPairs

⊕,

x11 · · · x1d
... . . . ...
xn1 · · · xnd

 ,

y11 · · · y1m
... . . . ...
yn1 · · · ynm


→


z11 · · · z1m
... . . . ...
zn1 · · · znm

 (2.8)

where:
zij = [xi1,xi2, . . . ,xid]⊕

[
yj1,yj2, . . . ,yjd

]
(2.9)

An additional implementation is provided for when the ⊕ operator is known to
match that of a zip pattern:

zij =
[
xi1,⊕yj1,xi2⊕yj2, . . . ,xid⊕yjd

]
(2.10)

This pattern has applications from bioinformatics to matrix multiplication, and
uses fast local memory to reduce data access times for repeated reads.

Stencil

Stencils are patterns of computation which operate on uniform grids of data,
where the value of each cell is updated based on its current value and the
value of one or more neighbouring elements, called the border region. Introduced
in [BSG14], SkelCL provides a 2D stencil skeleton which allows users to provide
a function which updates a cell’s value, while SkelCL orchestrates the parallel
execution of this function across all cells.

The border region is described by a stencil shape, which defines an i× j rect-
angular region about each cell which is used to update the cell value. Stencil
shapes may be asymmetrical, and are defined in terms of the number of cells
in the border region to the north, east, south, and west of each cell, shown in
Figure 2.3. Given a customising function f , a stencil shape S, and an n×m
matrix:

Stencil

f,S,

x11 · · · x1m
... . . . ...
xn1 · · · xnm


→


z11 · · · z1m
... . . . ...
zn1 · · · znm

 (2.11)
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Figure 2.3: The border region of a stencil is defined using a stencil shape S, consisting
of the four independent components describing the number of cells north Sn, east
Se, west Sw, and south Ss.

where:

zij = f



zi−Sn,j−Sw · · · zi−Sn,j+Se

... . . . ...
zi+Ss,j−Sw · · · zi+Ss,j+Se


 (2.12)

Note that a stencil operation in which the size of the stencil shape S is zero in
every direction is functionally equivalent to a Map operation. Where the border
region includes elements outside of the matrix, values are substituted from either
a predefined padding value, or the value of the nearest cell within the matrix,
depending on user preference.

A popular usage of Stencil codes is for solving problems iteratively, whereby a
stencil operation is repeated over a range of discrete time steps 0≤ t≤ tmax, and
t ∈ Z. An iterative stencil operation g accepts a customising function f , a Stencil
shape S, and a matrix M with initial values Minit. The value of an iterative
stencil can be defined recursively as:

g(f,S,M,t) =


Stencil (f,S,g(f,S,M,t−1)) , if t≥ 1

Minit, otherwise
(2.13)

Examples of iterative stencils are cellular automata. Another extension of the
stencil operation accepts an ordered list of customising functions which are ap-
plied sequentially for each iteration. This has applications for multi-stage stencil
operations such as Canny Edge Detection, in which four distinct stencil opera-
tions are performed as a sequence.
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2.4.2 Implementation Details

Each skeleton is represented by a template class, declared in a header file detailing
the public API, e.g. SkelCL/Stencil.h. A private header file contains the tem-
plate class declaration, e.g. SkelCL/detail/StencilDef.h. Small OpenCL ker-
nels are stored as inline strings inside the definition headers. Non-trivial OpenCL
kernels are stored in separate source files, e.g. SkelCL/detail/StencilKernel.cl.
Muscle functions are passed as OpenCL strings to the skeleton template classes,
and the LLVM API is used to perform argument and function name substitution.

Stencil Implementation

For the stencil skeleton, each cell maps to a single work item; and this collection
of work items is then divided into workgroups for execution on the target hard-
ware. In a stencil code, each work-item reads the value of the corresponding grid
elements, and the surrounding elements defined by the border region. Since the
border regions of neighbouring elements overlap, the value of all elements within a
workgroup are stored in a tile, which is a region of local memory. As local memory
access times are much smaller than that of global memory, this greatly reduces
the latency of the border region reads performed by each workitem. Changing
the workgroup size thus affects the amount of local memory required for each
workgroup, which in turn affects the number of workgroups which may be simul-
taneously active. So while the user defines the size, type, and border region of
the of the grid being operated upon, it is the responsibility of the SkelCL stencil
implementation to select an appropriate workgroup size to use.

2.5 Machine Learning

Multiple machine learning methods are used in this thesis to perform classifi-
cation and regression tasks. Classification is the task of predicting the correct
category — or class — for a new instance, based on “labelled” training data, i.e.
instances whose categories are known. The properties describing instances are
called features. The purpose of regression is to predict the relationship between
a dependent variable and the value of one or more independent variables. Unlike
with classification, the predicted dependent variable can be continuous, rather
than categorical. This section briefly describes the properties of classifiers and
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Figure 2.4: The components of a stencil: a grid of cells is decomposed into work-
groups, consisting of multiple workitems. Each work item operates on a border region,
and the size of the workgroup and outer border region defines a tile, which is a region
of local memory allocated to each workgroup.

regressors used in this thesis.

ZeroR

A “ZeroR” classifier represents the simplest approach to classification, in that it
ignores all features, and simply predicts the mode of the training data labels. This
is useful for providing a baseline to evaluate the performance of more complex
classifiers against, since a ZeroR classifier has no power of prediction.

Naive Bayes

Naive Bayes classifiers are probabilistic classifiers which assume strong inde-
pendence between features. That is, the value of one feature is considered
independently of another, and is what lends the Naive portion of the name.
The goal of Naive Bayes is to predict the probability of a class y, given a set
of d independent variables x = x1,x2, . . .xd. Naive Bayes applies Bayes theo-
rem, which states that given a prior (i.e. unconditional) probability for each
class P (y), a class-conditional model P (x|y), and a normaliser across all classes
P (x) = ∑

y′ P (x|y′)P (y′): the probability of a class y given dependent variables
x is equal to the probability of x given y, multiplied by the probability of y:

P (y|x) = P (x|y)P (y)∑
y′ P (x|y′)P (y′) (2.14)

The class which has the highest probability from the set of possible classes Y is
the prediction. Note that the normaliser P (x) does not affect the class which is
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most likely. The class conditional model uses “counts” for each observation based
on training data:

P (x|y) =
d∏
i=1

P (xi|y) (2.15)

The simplicity of Naive Bayes makes it attractive for various purposes such as
text classification (using word frequency as features), but the assumption of in-
dependence makes it unsuitable for certain use cases.

Decision Trees

Decision trees are an intuitive form of classification in which a tree structure of
decision nodes are used to predict the class for a given set of features. Decision
trees are built using binary recursive partitioning: by creating a decision node
for the feature which provides the highest gain, creating new child nodes for
each possible outcome, splitting dividing the data amongst these child nodes,
and recursing. To find the gain of an feature, we first compute the entropy of
the data set. Given a set of data points D, and p(+) and p(−) are the number of
positive and negative examples in D:

H(D) =−p(+) log2 p(+)−p(−) log2 p(−) (2.16)

The gain of an feature x is then found using:

Gain(D,x) =H(D)−
∑

V ∈Values(x)

|DV |
|D|

H(DV ) (2.17)

Decision trees are very popular and low overhead form of classification, as they
can be implemented using a nested set of if/else statements. However, they
can often overfit to the training data.

Random Forest

Random Forests are an ensemble technique which attempt to overcome the ten-
dency of decision trees to overfit to training data by training multiple decision
trees and using the mode of each tree to select predictions [Bre99]. Alternatively
they can be trained using regression trees, in which case the predicted value is
the mean output of all trees.
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2.6 Statistics

This section describes a number of the statistical tools used throughout this thesis.

Interquartile Range

For a given set of ordered data values, the quartiles are the three points that
divide the data set into four groups of equal size. The first quartile is the point
which Q1 divides the data equally between the lowest value and the median, Q2.
The third quartile Q3 is the point which divides the data between the median
and the highest value. The interquartile range (IQR) measures the dispersion of
a data set, and is the difference between the third and first quartiles, Q3−Q1.

Confidence Intervals

Confidence intervals estimate the interval for the true range of a population pa-
rameter. Given a set of samples of a population with estimates of a parameter
value for each, the confidence interval (c1, c2) estimates the frequency that the
true parameter value will fall between the per-sample confidence interval. Given
a sample x with sample size n, the confidence interval for a confidence α is found
using:

x̄= 1
n

n∑
i=1

xi (2.18)

σ =
√∑n

i=1(xi− x̄)2

n−1 (2.19)

c1 = x̄− z1−α/2
σ√
n

(2.20)

c2 = x̄+ z1−α/2
σ√
n

(2.21)

Where the value z1−α/2 assumes a Gaussian distribution of the underlying data,
and the values for popular α values are typically found using pre-computed “Z-
tables”. To calculate confidence intervals for the ratio of two means, x̄1 and x̄2

with sample sizes n1 and n2, and respective standard deviations σ1 and σ2:

σx =

√√√√σ2
1
n1

+ σ2
2
n2

(2.22)

c1 = x̄1− x̄2− z1−α/2σx (2.23)

c2 = x̄1− x̄2 + z1−α/2σx (2.24)
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The above calculations assumes that the sample variance (σ2) is an accurate
estimation of the true population variance. This relies on the assumption of an
underlying Gaussian distribution, which, according to the central limit theorem,
is true of large sample sizes (typically n ≥ 30). In cases of smaller sample sizes,
the sample and population variances can differ significantly, so one must instead
use a Student’s t-distribution, t1−α/2, in place of z1−α/2.

Histogram

Histograms are a widely used statistical visualisation which shows the distribution
of numerical data. The data is first divided into a set of discrete, equally sized
sub-intervals, or bins. The number of data points in each bin is used to show
visualise the density distribution. The shortcoming of histograms is that their
appearance is heavily influenced by three user-selected parameters: the number
of bins, the width of bins (binwidth), and the endpoints chosen. As such, they
may provide a misleading representation of the data if inappropriate values for
any of these parameters are chosen. Kernel Density estimation is a technique for
showing the distribution of data which circumvents some of these issues.

Kernel Density Estimation

A Kernel Density Estimate (KDE) is an approximation of the probability density
function of a random variable. Given a random variable x, and bandwidth h and
a kernel K, the Kernel Density Estimate f̂h(x) can be found using:

f̂h(x) = 1
nh

n∑
i=1

K
(
x−xi
h

)
(2.25)

Using a smooth kernel such as a Gaussian distribution for the kernel produces
a smooth density estimated, unlike histograms. However, like histograms, the
appearance of a Kernel Density Estimate plot is dependent on the value of the
bandwidth parameter h (equivalent to binwidth in histograms), so care must be
taken to select a value to minimise over or under smoothing. Grouped data can
be shown by plotting multiple KDEs on the same axes, although if the number
of groups is large, a box plot or violin plot may be more appropriate.



2.7. Summary 23

Box plot

Box plots are used to show the distribution of quartile ranges for grouped data.
The contain the following features:

• Horizontal lines at the lower quartile, median and upper quartile.

• Vertical lines above and below the upper and lower quartiles to the most
extreme data point within 1.5 IQR of the upper/lower quartile, with hori-
zontal whiskers at the end of the vertical lines.

• Dots beyond the ends of the vertical lines to show outliers.

A variation of box plots used in this thesis is the violin plot, which extends the box
plot with a fitted Kernel Density Estimate plot to show the probability density
of data at different values. To construct a violin plot, KDEs for each group are
rotated and mirrored to generate a smoothed visualisation of the distribution.

2.7 Summary

This chapter gave a brief introduction to general-purpose computing using graph-
ics hardware, the OpenCL framework, and SkelCL. It was followed by a descrip-
tion of the machine learning techniques used throughout this thesis, and the
statistical tools used for the evaluation. In the next chapter, I review the state
of the art in the field of autotuning, and provide context for the contributions of
this thesis.





Chapter 3

Related Work

This chapter begins with a brief survey of the broad field of literature that is
relevant to algorithmic skeletons. This is followed by a review of the current
state of the art in autotuning research, focusing on heterogeneous parallelism,
algorithmic skeletons, and stencil codes. It presents the context and rationale for
the research undertaken for this thesis.

3.1 Automating Parallelism

It is widely accepted that parallel programming is difficult, and the continued
repetition of this claim has become something of a trite mantra for the parallelism
research community. An interesting digression is to discuss some of the ways
in which researchers have attempted to tackle this difficult problem, and why,
despite years of research, it remains an ongoing challenge.

The most ambitious and perhaps daring field of parallelism research is that of
automatic parallelisation, where the goal is to develop methods and systems to
transform arbitrary sequential code into parallelised code. This is a well studied
subject, with the typical approach being to perform these code transformations
at the compilation stage. In Banerjee, Eigenmann, and Nicolau’s thorough re-
view [BEN93] on the subject, they outline the key challenges of automatic paral-
lelisation:

• determining whether sequential code can be legally transformed for parallel
execution; and

• identifying the transformation which will provide the highest performance

25
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improvement for a given piece of code.

Both of these challenges are extremely hard to tackle. For the former, the diffi-
culties lie in performing accurate analysis of code behaviour. Obtaining accurate
dynamic dependency analysis at compile time is an unsolved problem, as is re-
solving pointers and points-to analysis [Atk13; GLS01; Hin01].

The result of these challenges is that reliably performant, automatic paralleli-
sation of arbitrary programs remains a far from reached goal; however, there are
many note worthy variations on the theme which have been able to achieve some
measure of success.

One such example is speculative parallelism, which circumvents the issue of
having incomplete dependency information by speculatively executing code re-
gions in parallel while performing dependency tests at runtime, with the possi-
bility to fall back to “safe” sequential execution if correctness guarantees are not
met [Pra10; TG10]. In [Jim+14], Jimborean et al. present a system which com-
bines polyhedral transformations of user code with binary algorithmic skeleton
implementations for speculative parallelisation, reporting speedups over sequen-
tial code of up to 15.62× on a 24 core processor.

Another example is PetaBricks, which is a language and compiler enabling
parallelism through “algorithmic choice” [AC10; Ans09]. With PetaBricks, users
provide multiple implementations of algorithms, optimised for different parame-
ters or use cases. This creates a search space of possible execution paths for a
given program. This has been combined with autotuning techniques for enabling
optimised multigrid programs [Cha+09], with the wider ambition that these au-
totuning techniques may be applied to all algorithmic choice programs [Ans14].
While this helps produce efficient parallel programs, it places a great burden on
the developer, requiring them to provide enough contrasting implementations to
make a search of the optimisation space fruitful.

Annotation-driven parallelism takes a similar approach. The user annotates
their code to provide “hints” to the compiler, which can then perform parallelis-
ing transformations. A popular example of this is OpenMP, which uses com-
piler pragmas to mark code sections for parallel or vectorised execution [DE98].
Previous work has demonstrated code generators for translating OpenMP to
OpenCL [GWO13] and CUDA [LME09]. Again, annotation-driven parallelism
suffers from placing a burden on the developer to identify the potential areas for
parallelism, and lacks the structure that algorithmic skeletons provide.
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Algorithmic skeletons contrast the goals of automatic parallelisation by re-
moving the challenge of identifying potential parallelism from compilers or users,
instead allowing users to frame their problems in terms of well defined patterns of
computation. This places the responsibility of providing performant, well tuned
implementations for these patterns on the skeleton author.

3.2 Iterative Compilation & Machine Learning

Iterative compilation is the method of performance tuning in which a program
is compiled and profiled using multiple different configurations of optimisations
in order to find the configuration which maximises performance. One of the
the first formalised publications of the technique appeared in 1998 by Bodin et
al. [Bod+98]. Iterative compilation has since been demonstrated to be a highly
effective form of empirical performance tuning for selecting compiler optimisa-
tions.

Given the huge number of possible compiler optimisations (there are 207 flags
and parameters to control optimisations in GCC v4.9), it is often unfeasible
to perform an exhaustive search of the entire optimisation space, leading to the
development of methods for reducing the cost of evaluating configurations. These
methods reduce evaluation costs either by shrinking the dimensionality or size of
the optimisation space, or by guiding a directed search to traverse a subset of the
space.

Machine learning has been successful applied to this problem, in [SMR03],
using “meta optimisation” to tune compiler heuristics through an evolutionary
algorithm to automate the search of the optimisation space. Fursin et al. con-
tinued this with Milepost GCC, the first machine learning-enabled self-tuning
compiler [Fur+11]. A recent survey of the use of machine learning to improve
heuristics quality by Burke et al. concludes that the automatic generation of these
self-tuning heuristics but is an ongoing research challenge that offers the greatest
generalisation benefits [Bur+13].

In [FT10; Fur+14; MF13], Fursin et al. advocate a collaborative and “big
data” driven approach to autotuning, arguing that the challenges facing the
widespread adoption of autotuning and machine learning methodologies can be
attributed to: a lack of common, diverse benchmarks and datasets; a lack of com-
mon experimental methodology; problems with continuously changing hardware
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and software stacks; and the difficulty to validate techniques due to a lack of
sharing in publications. They propose a system for addressing these concerns,
the Collective Mind knowledge system, which, while in early stages of ongoing
development, is intended to provide a modular infrastructure for sharing auto-
tuning performance data and related artifacts across the internet. In addition
to sharing performance data, the approach taken in this thesis emphasises the
collective exploitation of such performance data, so that data gathered from one
device may be used to inform the autotuning decisions of another. This requires
each device to maintain local caches of shared data to remove the network over-
head that would be present from querying a single centralised data store during
execution of a hot path. The current implementation of Collective Mind uses a
NoSQL JSON format for storing performance data. The relational schema used
in this thesis offers greater scaling performance and lower storage overhead as the
amount of performance data grows.

Whereas iterative compilation requires an expensive offline training phase to
search an optimisation space, dynamic optimisers perform this optimisation space
exploration at runtime, allowing programs to respond to dynamic features “on-
line”. This is a challenging task, as a random search of an optimisation space may
result in configurations with vastly suboptimal performance. In a real world sys-
tem, evaluating many suboptimal configurations will cause a significant slowdown
of the program. Thus a requirement of dynamic optimisers is that convergence
time towards optimal parameters is minimised.

Existing dynamic optimisation research has typically taken a low level ap-
proach to performing optimisations. Dynamo is a dynamic optimiser which per-
forms binary level transformations of programs using information gathered from
runtime profiling and tracing [BDB00]. While this provides the ability to respond
to dynamic features, it restricts the range of optimisations that can be applied
to binary transformations. These low level transformations cannot match the
performance gains that higher level parameter tuning produces.

An interesting related tangent to iterative compilation is the development of
so-called “superoptimisers”. In [Mas87], the smallest possible program which per-
forms a specific function is found through a brute force enumeration of the entire
instruction set. Starting with a program of a single instruction, the superopti-
miser tests to see if any possible instruction passes a set of conformity tests. If
not, the program length is increased by a single instruction and the process re-
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peats. The exponential growth in the size of the search space is far too expensive
for all but the smallest of hot paths, typically less than 13 instructions. The
optimiser is limited to register to register memory transfers, with no support for
pointers, a limitation which is addressed in [JNR02]. Denali is a superoptimiser
which uses constraint satisfaction and rewrite rules to generate programs which
are provably optimal, instead of searching for the optimal configuration through
empirical testing. Denali first translates a low level machine code into guarded
multi-assignment form, then uses a matching algorithm to build a graph of all
of a set of logical axioms which match parts of the graph, before using boolean
satisfiability to disprove the conjecture that a program cannot be written in n

instructions. If the conjecture cannot be disproved, the size of n is increased and
the process repeats.

3.2.1 Training with Synthetic Benchmarks

The use of synthetic benchmarks for providing empirical performance evaluations
dates back to as early as 1974 [CW76]. The automatic generation of such syn-
thetic benchmarks is a more recent innovation, serving the purpose initially of
stress-testing increasingly complex software systems for behaviour validation and
automatic bug detection [GLM08; VCS00]. A range of techniques have been de-
veloped for these purposes, ranging from applying random mutations to a known
dataset to generate test stimuli, to so-called “whitebox fuzz testing” which anal-
yses program traces to explore the space of a program’s control flow. Csmith is
one such tool which generates randomised C source programs for the purpose of
automatically detecting compiler bugs [Yan+12].

A method for the automatic generation of synthetic benchmarks for the pur-
pose of performance tuning is presented in [CGA15]. Chiu, Garvey, and Abdel-
rahman use template substitution over a user-defined range of values to generate
training programs with a statistically controlled range of features. A Perl prepro-
cessor generates output source codes from an input description using a custom
input language Genesis. Genesis is more flexible than the system presented in
this thesis, supporting substitution of arbitrary sources. The authors describe an
application of their tool for generating OpenCL stencil kernels, but do not report
any performance results.
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3.3 Performance Tuning for Heterogeneous Paral-
lelism

As briefly discussed in Section 2.3, the complex interactions between optimisa-
tions and heterogeneous hardware makes performance tuning for heterogeneous
parallelism a difficult task. Performant GPGPU programs require careful at-
tention from the developer to properly manage data layout in DRAM, caching,
diverging control flow, and thread communication. The performance of programs
depends heavily on fully utilising zero-overhead thread scheduling, memory band-
width, and thread grouping. Ryoo et al. illustrate the importance of these factors
by demonstrating speedups of up to 432× for matrix multiplication in CUDA
by appropriate use of tiling and loop unrolling [Ryo+08a]. The importance of
proper exploitation of local shared memory and synchronisation costs is explored
in [Lee+10].

In [CW14], data locality optimisations are automated using a description of
the hardware and a memory-placement-agnostic compiler. The authors demon-
strate impressive speedups of up to 2.08×, although at the cost of requiring accu-
rate memory hierarchy descriptor files for all targeted hardware. The descriptor
files must be hand generated, requiring expert knowledge of the underlying hard-
ware in order to properly exploit memory locality.

Data locality for nested parallel patterns is explored in [Lee+14]. The authors
use an automatic mapping strategy for nested parallel skeletons on GPUs, which
uses a custom intermediate representation and a CUDA code generator, achieving
1.24× speedup over hand optimised code on 7 of 8 Rodinia benchmarks.

Reduction of the GPGPU optimisation space is demonstrated in [Ryo+08b],
using the common subset of optimal configurations across a set of training ex-
amples. This technique reduces the search space by 98%, although it does not
guarantee that for a new program, the reduced search space will include the
optimal configuration.

Magni, Dubach, and O’Boyle demonstrated that thread coarsening of OpenCL
kernels can lead to speedups in program performance between 1.11× and 1.33×
in [MDO14]. The authors achieve this using a machine learning model to predict
optimal thread coarsening factors based on the static features of kernels, and an
LLVM function pass to perform the required code transformations.

A framework for the automatic generation of OpenCL kernels from high-level
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programming concepts is described in [SFD15]. A set of rewrite rules is used to
transform high-level expressions to OpenCL code, creating a space of possible
implementations. This approach is ideologically similar to that of PetaBricks, in
that optimisations are made through algorithmic choice, although in this case the
transformations are performed automatically at the compiler level. The authors
report performance on a par with that of hand written OpenCL kernels.

3.4 Autotuning Algorithmic Skeletons

An enumeration of the optimisation space of Intel Thread Building Blocks in [CM08]
shows that runtime knowledge of the available parallel hardware can have a sig-
nificant impact on program performance. Collins, Fensch, and Leather exploit
this in [CFL12], first using Principle Components Analysis to reduce the dimen-
sionality of the space of possible optimisation parameters, followed by a search
of parameter values to optimise program performance by a factor of 1.6× over
values chosen by a human expert. In [Col+13], they extend this using static fea-
ture extraction and nearest neighbour classification to further prune the search
space, achieving an average 89% of the oracle performance after evaluating 45
parameters.

Dastgeer developed a machine learning based autotuner for the SkePU skele-
ton library in [Das11]. Training data is used to predict the optimal execution
device (i.e. CPU, GPU) for a given program by predicting execution time and
memory copy overhead based on problem size. The autotuner only supports vec-
tor operations, and there is limited cross-architecture evaluation. In [DK15], the
authors extend SkePU to improve the data consistency and transfer overhead of
container types, reporting up to a 33.4× speedup over the previous implementa-
tion.

3.5 Code Generation and Autotuning for Stencils

Stencil codes have a variety of computationally expensive uses from fluid dynamics
to quantum mechanics. Efficient, tuned stencil kernels are highly sought after,
with early work in 2003 by Bolz et al. demonstrating the capability of GPUs for
massively parallel stencil operations [Bol+03]. In the resulting years, stencil codes
have received much attention from the performance tuning research community.
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Ganapathi et al. demonstrated early attempts at autotuning multicore stencil
codes in [Gan+09], drawing upon the successes of statistical machine learning
techniques in the compiler community, as discussed in Section 3.2. They present
an autotuner which can achieve performance up to 18% better than that of a
human expert. From a space of 10 million configurations, they evaluate the
performance of a randomly selected 1500 combinations, using Kernel Canonical
Correlation Analysis to build correlations between tunable parameter values and
measured performance targets. Performance targets are L1 cache misses, TLB
misses, cycles per thread, and power consumption. The use of KCAA restricts the
scalability of their system as the complexity of model building grows exponentially
with the number of features. In their evaluation, the system requires two hours
of compute time to build the KCAA model for only 400 seconds of benchmark
data. They present a compelling argument for the use of energy efficiency as
an optimisation target in addition to runtime, citing that it was the power wall
that lead to the multicore revolution in the first place. Their choice of only 2
benchmarks and 2 platforms makes the evaluation of their autotuner somewhat
limited.

Berkeley et al. targeted 3D stencils code performance in [Ber+08]. Stencils
are decomposed into core blocks, sufficiently small to avoid last level cache ca-
pacity misses. These are then further decomposed to thread blocks, designed to
exploit common locality threads may have within a shared cache or local memory.
Thread blocks are divided into register blocks in order to take advantage of data
level parallelism provided by the available registers. Data allocation is optimised
on NUMA systems. The performance evaluation considers speedups of various
optimisations with and without consideration for host/device transfer overhead.

Kamil et al. present an autotuning framework in [Kam+10] which accepts
as input a Fortran 95 stencil expression and generates tuned shared-memory
parallel implementations in Fortan, C, or CUDA. The system uses an IR to ex-
plore autotuning transformations, enumerating a subset of the optimisation space
and recording only a single execution time for each configuration, reporting the
fastest. They demonstrate their system on 4 architectures using 3 benchmarks,
with speedups of up to 22× compared to serial implementations. The CUDA
code generator does not optimise for the GPU memory hierarchy, using only
global memory. As demonstrated in this thesis, improper utilisation of local
memory can hinder program performance by two orders of magnitude. There is
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no directed search or cross-program learning.

In [ZM12], Zhang and Mueller present a code generator and autotuner for 3D
Jacobi stencil codes. Using a DSL to express kernel functions, the code generator
performs substitution from one of two CUDA templates to create programs for
execution on GPUs. GPU programs are parameterised and tuned for block size,
block dimensions, and whether input data is stored in read only texture memory.
This creates an optimisation space of up to 200 configurations. In an evaluation of
4 benchmarks, the authors report impressive performance that is comparable with
previous implementations of iterative Jacobi stencils on GPUs [HPS12; PF10].
The dominating parameter is shown to be block dimensions, followed by block
size, then read only memory. The DSL presented in the paper is limited to
expressing only Jacobi Stencils applications. Critically, their autotuner requires
a full enumeration of the parameter space for each program. Since there is no
indication of the compute time required to gather this data, it gives the impression
that the system would be impractical for the needs of general purpose stencil
computing. The autotuner presented in this thesis overcomes this drawback by
learning parameter values which transfer to unseen stencils, without the need for
an expensive tuning phase for each program and architecture.

In [CSB11], Christen, Schenk, and Burkhart presentf a DSL for expressing
stencil codes, a C code generator, and an autotuner for exploring the optimi-
sation space of blocking and vectorisation strategies. The DSL supports stencil
operations on arbitrarily high-dimensional grids. The autotuner performs either
an exhaustive, multi-run Powell search, Nelder Mead, or evolutionary search to
find optimal parameter values. They evaluate their system on two CPUS and
one GPU using 6 benchmarks. A comparison of tuning results between different
GPU architectures would have been welcome, as the results presented in this the-
sis show that devices have different responses to optimisation parameters. The
authors do not present a ratio of the available performance that their system
achieves, or how the performance of optimisations vary across benchmarks or
devices.

A stencil grid can be decomposed into smaller subsections so that multiple
GPUs can operate on each subsection independently. This requires a small over-
lapping region where each subsection meets — the halo region — to be shared
between devices. For iterative stencils, values in the halo region must be syn-
chronised between devices after each iteration, leading to costly communication
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overheads. One possible optimisation is to deliberately increase the size of the
halo region, allowing each device to compute updated values for the halo region,
instead of requiring a synchronisation of shared state. This reduces the commu-
nication costs between GPUs, at the expense of introducing redundant compu-
tation. Tuning the size of this halo region is the goal of PARTANS [LFC13], an
autotuning framework for multi-GPU stencil computations. Lutz, Fensch, and
Cole explore the effect of varying the size of the halo regions using six bench-
mark applications, finding that the optimal halo size depends on the size of the
grid, the number of partitions, and the connection mechanism (i.e. PCI express).
The authors present an autotuner which determines problem decomposition and
swapping strategy offline, and performs an online search for the optimal halo size.
The selection of overlapping halo region size compliments the selection of work-
group size which is the subject of this thesis. However, PARTANS uses a custom
DSL rather than the generic interface provided by SkelCL, and PARTANS does
not learn the results of tuning across programs, or across multiple runs of the
same program.

3.6 Summary

There is already a wealth of research literature on the topic autotuning which
begs the question, why isn’t the majority of software autotuned? In this chapter
I attempted to answer the question by reviewing the state of the art in the
autotuning literature, with specific reference to auotuning for GPUs and stencil
codes. The bulk of this research falls prey of one of two shortcomings. Either they
identify and develop a methodology for tuning a particular optimisation space
but then fail to develop a system which can properly exploit this (for example,
by using machine learning to predict optimal values across programs), or they
present an autotuner which targets too specific of a class of optimisations to be
widely applicable. This project attempts to address both of those shortcomings
by expending great effort to deliver a working implementation which users can
download and use without any setup costs, and by providing a modular and
extensible framework which allows rapid targeting of new autotuning platforms,
enabled by a shared autotuning logic and distributed training data. The following
chapter outlines the design of this system.



Chapter 4

OmniTune - an Extensible, Dynamic
Autotuner

4.1 Introduction

In previous chapters I have advocated the use of machine learning for autotuning.
In this chapter, I present OmniTune, a framework for extensible, distributed
autotuning using machine learning. OmniTune provides a replacement for the
kinds of ad-hoc tuning typically performed by expert programmers by providing
runtime prediction of tunable parameters using collaborative, online learning of
optimisation spaces. First I describe the high level overview of the approach to
autotuning, then I describe the system architecture and set of interfaces exposed
by Omnitune.

4.2 Predicting Optimisation Parameter Values

The goal of machine learning-enabled autotuning is to predict the values for op-
timisation parameters to maximise some measure of profit. These predictions
are based on models built from prior observations. The prediction quality is
influenced by the number of prior observations. OmniTune supports both pre-
diction of parameters based on prior observations, and a method for collecting
these observations. When a client program requests parameter values, it indicates
whether the request is for training or performance purposes, and uses a different
backend to select parameter values for each. New observations can then be added
once parameters have been evaluated. Figure 5.1 shows this process.

35
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4.3 System Architecture and Interface

Common implementations of autotuning in the literature either: embed the au-
totuning logic within the each target application, or take a standalone approach
in which the autotuner is a program which must be invoked by the user to tune a
target application. Embedding the autotuner within each target application has
the advantage of providing “always-on” behaviour, but is infeasible for complex
systems in which the cost of building machine learning models must be added
to each program run. The standalone approach separates the autotuning logic,
at the expense of adding one additional step to the build process. The approach
taken in OmniTune aims to capture the advantages of both techniques by im-
plementing a autotuning as a service, with only the lightweight communication
logic embedded in the target applications.

Omnitune is built around a three tier client-server model. The applications
which are to be autotuned are the clients. These clients commmunicate with a
system-wide server, which handles autotuning requests. The server communicates
and caches data sourced from a remote, which maintains a global store of all
autotuning data. Figure 4.2 shows this structure.

There is a many to one relationship between clients, servers, and remotes,
such that a single remote may handle connections to multiple servers, which in
turn may accept connections from multiple clients. This design has two primary
advantages: the first is that it decouples the autotuning logic from that of the
client program, allowing developers to easily repurpose the autotuning framework
to target additional optimisation parameters without a significant development
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Figure 4.1: The process of selecting optimisation parameter values for a given user
program with OmniTune.
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Figure 4.2: High level overview of OmniTune components.

overhead for the target applications; the second advantage is that this enables
collective tuning, in which training data gathered from a range of devices can be
accessed and added to by any OmniTune server.

OmniTune supports autotuning using a separate offline training phase, online
training, or a mixture of both. Figure 4.3 shows an example pattern of com-
munication between the three tiers of an OmniTune system, showing a distinct
training phase. Note that this training phase is enforced only by the client. The
following sections describe the interfaces between the three components.

Training

ServerClient Remote

RequestTraining(x) : p

Pull() : x, p, y

Push(x, p, y)

Request(x) : p

Submit(x, p, y)

Request(x) : p

Figure 4.3: An example communication pattern between OmniTune components,
showing an offline training phase.
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4.3.1 Client Interface: Lightweight Communication

Client applications communicate with an OmniTune server through four opera-
tions:

• Request(x)→ p Given a set of explanatory variables x, request a set of
parameter values p to maximise performance.

• RequestTraining(x)→ p Given a set of explanatory variables x, allow
the server to select a set of parameter values p for evaluating their fitness.

• Submit(x,p,y) Submit an observed measurement of fitness y of parameters
p, given explantory variables x.

• Refuse(x,p) Refuse a set of parameters p given a set of explanatory vari-
ables x. Once refused, those parameters will not be returned by any subse-
quent calls to Request() or RequestTraining().

This set of operations enables the core functionality of an autotuner, while pro-
viding flexibility for the client to control how and when training data is collected.

4.3.2 Server: Autotuning Engine

For each autotuning-capable machine, a system-level daemon hosts a DBus ses-
sion bus which client processes communicate with. This daemon acts as an inter-
mediate between the training data and the client applications, serving requests
for optimisation parameter values. Servers operations are application-specific, so
there is a set of operations to implement autotuning of each supported optimisa-
tion target.

The server is implemented as a standalone Python program, and contains a li-
brary of machine learning tools to perform parameter prediction, interfacing with
Weka using the JNI. Weka is a suite of data mining software developed by the
University of Waikato, freely available under the GNU GPL license 1. OmniTune
servers may perform additional feature extraction of explanatory variables sup-
plied by incoming client requests. The reason for performing feature extraction
on the server as opposed to on the client side is that this allows the results of
expensive operations (for example, analysing source code of target applications)
to be cached for use across the lifespan of client applications. The contents of

1http://www.cs.waikato.ac.nz/ml/weka/
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these local caches are periodically and asynchronously synced with the remote,
to maintain a global store of lookup tables for expensive operations.

On launch, the server requests the latest training data from the remote, which
it uses to build the relevant models for performing prediction of optimisation
parameter values. Servers communicate with remotes by submitting or requesting
training data in batches, using two operations:

• Push(f ,c) Submit a set of labelled training points as pairs (f,c).

• Pull()→ (f ,c) Request training data as a set of labelled (f,c) pairs.

4.3.3 Remote: Distributed Training Data

The role of the remote is to provide bookkeeping of training data for machine
learning. Using the interface described in the previous section, remotes allow
shared access to data from multiple servers using a transactional communication
pattern.

4.4 Summary

This chapter has described the architecture of of OmniTune, a distributed auto-
tuner which is capable of performing runtime prediction of optimal workgroup
sizes using a variety of machine learning approaches. OmniTune uses a client-
server model to decouple the autotuning logic from target programs and to main-
tain separation of concerns. It uses lightweight inter-process communication to
achieve low latency autotuning, and uses caches and lookup tables to minimise
the one-off costs of feature extraction.





Chapter 5

Autotuning SkelCL Stencils

5.1 Introduction

In this chapter I apply the OmniTune framework to SkelCL. The publicly avail-
able implementation 1 predicts workgroup sizes for OpenCL stencil skeleton ker-
nels in order to minimise their runtime on CPUs and multi-GPU systems. The
optimisation space presented by the workgroup size of OpenCL kernels is large,
complex, and non-linear. Successfully applying machine learning to such a space
requires plentiful training data, the careful selection of features, and classification
approach. The following sections address these challenges.

5.2 Training

One challenge of performing empirical performance evaluations is gathering enough
applications to ensure meaningful comparisons. Synthetic benchmarks are one
technique for circumventing this problem. The automatic generation of such
benchmarks has clear benefits for reducing evaluation costs; however, creating
meaningful benchmark programs is a difficult problem if we are to avoid the
problems of redundant computation and produce provable halting benchmarks.

In practise, stencil codes exhibit many common traits: they have a tightly
constrained interface, predictable memory access patterns, and well defined nu-
merical input and output data types. This can be used to create a confined space
of possible stencil codes by enforcing upper and lower bounds on properties of
the codes which can not normally be guaranteed for general-purpose programs,

1https://github.com/ChrisCummins/omnitune
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e.g. the number of floating point operations. In doing so, it is possible to pro-
gramatically generate stencil workloads which share similar properties to those
which we intend to target.

Based on observations of real world stencil codes from the fields of cellular
automata, image processing, and PDE solvers, I implemented a stencil generator
which uses parameterised kernel templates to produce source codes for collecting
training data. The stencil codes are parameterised by stencil shape (one parame-
ter for each of the four directions), input and output data types (either integers,
or single or double precision floating points), and complexity — a simple boolean
metric for indicating the desired number of memory accesses and instructions per
iteration, reflecting the relatively bi-modal nature of the reference stencil codes,
either compute intensive (e.g. FDTD simulations), or lightweight (e.g. Game of
Life).

Using a large number of synthetic benchmarks helps adress the “small n, large
P” problem, which describes the difficulty of statistical inference in spaces for
which the set of possible hypotheses P is significantly larger than the number of
observations n. By creating parameterised, synthetic benchmarks, it is possible to
explore a much larger set of the space of possible stencil codes than if relying solely
on reference applications, reducing the risk of overfitting to particular program
features.

5.3 Stencil Features

Properties of the architecture, program, and dataset all contribute to the perfor-
mance of a workgroup size. The success of a machine learning system depends
on the ability to translate these properties into meaningful explanatory variables
— features. To capture this in OmniTune, parameter requests are packed with a
copy of the OpenCL kernel and attributes of the dataset and device. The Omni-
Tune server extracts 102 features describing hte architecture, kernel, and dataset
from the message:

• Device — OmniTune uses the OpenCL clGetDeviceInfo() API to query
a number of properties about the target execution device. Examples include
the size of local memory, maximum work group size, number of compute
units, etc.
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Dataset Features Type

Number of columns in matrix numeric
Number of rows in matrix numeric
Input data type categorical
Output data type categorical

Kernel Features Type

Border region north numeric
Border region south numeric
Border region east numeric
Border region west numeric
Static instruction count numeric
AShr instruction density numeric
Add instruction density numeric
Alloca instruction density numeric
And instruction density numeric
Br instruction density numeric
Call instruction density numeric
FAdd instruction density numeric
FCmp instruction density numeric
FDiv instruction density numeric
FMul instruction density numeric
FPExt instruction density numeric
FPToSI instruction density numeric
FSub instruction density numeric
GetElementPtr instruction density numeric
ICmp instruction density numeric
InsertValue instruction density numeric
Load instruction density numeric
Mul instruction density numeric
Or instruction density numeric
PHI instruction density numeric
Ret instruction density numeric
SDiv instruction density numeric
SExt instruction density numeric
SIToFP instruction density numeric
SRem instruction density numeric
Select instruction density numeric
Shl instruction density numeric
Store instruction density numeric
Sub instruction density numeric
Trunc instruction density numeric
UDiv instruction density numeric
Xor instruction density numeric
ZExt instruction density numeric
Basic block density numeric
Memory instruction density numeric
Non external functions density numeric
Kernel max workgroup size numeric

Device Features Type

SkelCL device count numeric
Device address width categorical
Double precision fp. configuration categorical
Big endian? categorical
Execution capabilities categorical
Supported extensions categorical
Global memory cache size numeric
Global memory cache size categorical
Global memory cacheline size numeric
Global memory size numeric
Host unified memory? categorical
2D image max height numeric
2D image max width numeric
3D image max depth numeric
3D image max height numeric
3D image max width numeric
Image support categorical
Local memory size numeric
Local memory type categorical
Max clock frequency numeric
Number of compute units numeric
Max kernel constant args numeric
Max constant buffer size numeric
Max memory allocation size numeric
Max parameter size numeric
Max read image arguments numeric
Max samplers numeric
Max device workgroup size numeric
Max workitem dimensions numeric
Max work item sizes width numeric
Max work item sizes height numeric
Max work item sizes depth numeric
Max write image arguments numeric
Mem base address align numeric
Min data type align size numeric
Native vector width char numeric
Native vector width double numeric
Native vector width float numeric
Native vector width half numeric
Native vector width int numeric
Native vector width long numeric
Native vector width short numeric
Preferred vector width char numeric
Preferred vector width double numeric
Preferred vector width float numeric
Preferred vector width half numeric
Preferred vector width int numeric
Preferred vector width long numeric
Preferred vector width short categorical
Queue properties categorical
Single precision fp. configuration categorical
Device type categorical
OpenCL vendor categorical
OpenCL vendor ID categorical
OpenCL version categorical

Table 5.1: OmniTune SkelCL Stencil features for dataset, kernel, and device.



44 Chapter 5. Autotuning SkelCL Stencils

• Kernel — The user code for a stencil is passed to the OmniTune server,
which compiles the OpenCL kernel to LLVM IR bitcode. The opt InstCount
statistics pass is used to obtain static counts for each type of instruction
present in the kernel, as well as the total number of instructions. The
instruction counts for each type are divided by the total number of instruc-
tions to produce a density of instruction for that type. Examples include
total static instruction count, ratio of instructions per type, ratio of basic
blocks per instruction, etc.

• Dataset — The SkelCL container type is used to extract the input and
output data types, and the 2D grid size.

See Table 5.1 for a list of feature names and types.

5.3.1 Reducing Feature Extraction Overhead

Feature extraction (particularlly compilation to LLVM IR) introduces a runtime
overhead to the classification process. To minimise this, lookup tables for device
and dataset features are used, and cached locally in the OmniTune server and
pushed to the remote data store. The device ID is used to index the devices table,
and the checksum of an OpenCL source is used to index the kernel features table.
Before feature extraction for either occurs, a lookup is performed in the relevant
table, meaning that the cost of feature extraction is amortised over time.

5.4 Optimisation Parameters

SkelCL stencil kernels are parameterised by a workgroup size w, which consists of
two integer values to denote the number of rows and columns (where we need to
distinguish the individual components, we will use symbols wr and wc to denote
rows and columns, respectively).

5.4.1 Constraints

Unlike in many autotuning applications, the space of optimisation parameter
values is subject to hard constraints, and these constraints cannot conviently be
statically determined. Contributing factors are architectural limitations, kernel
constraints, and refused parameters.
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Architectural constraints

Each OpenCL device imposes a maximum workgroup size which can be stati-
cally checked by querying the clGetDeviceInfo() API for that device. These
are defined by archiectural limitations of how code is mapped to the underlying
execution hardware. Typical values are powers of two, e.g. 1024, 4096, 8192.

Kernel constraints

At runtime, once an OpenCL program has been compiled to a kernel, users
can query the maximum workgroup size supported by that kernel using the
clGetKernelInfo() API. This value cannot easily be obtained statically as there
is no mechanism to determine the maximum workgroup size for a given source
code and device without first compiling it, which in OpenCL does not occur
until runtime. Factors which affect a kernel’s maximum workgroup size include
the number registers required for a kernel, and the available number of SIMD
execution units for each type of instructions in a kernel.

Refused parameters

In addition to satisfying the constraints of the device and kernel, not all points
in the workgroup size optimisation space are guaranteed to provide working pro-
grams. A refused parameter is a workgroup size which satisfies the kernel and
architectural constraints, yet causes a CL_OUT_OF_RESOURCES error to be thrown
when the kernel is enqueued. Note that in many OpenCL implementations, this
error type acts as a generic placeholder and may not necessarily indicate that the
underlying cause of the error was due to finite resources constraints.

Legality

We define a legal workgroup size as one which, for a given scenario (a combination
of program, device, and dataset), satisfies the architectural and kernel constraints,
and is not refused. The subset of all possible workgroup sizes Wlegal(s)⊂W that
are legal for a given sceanario s is then:

Wlegal(s) = {w|w ∈W,w <Wmax(s)}−Wrefused(s) (5.1)

Where Wmax(s) can be determined at runtime prior to the kernels execution, but
the set Wrefused(s) can only be determined experimentally.
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5.4.2 Assessing Relative Performance

Given a set of observations, where an observation is a scenario, workgroup size
tuple (s,w); a function t(s,w) which returns the arithmetic mean of the runtimes
for a set of observations; we can calculate the speedup r(s,w1,w2) of competing
workgroup sizes w1 over w2 using:

r(s,w1,w2) = t(s,w2)
t(s,w1) (5.2)

Oracle Workgroup Size

The oracle workgroup size Ω(s) ∈Wlegal(s) of a sceanrio s is the w value which
provides the lowest mean runtime. This allows for comparing the performance
p(s,w) of a particular workgroup against the maximum available performance for
that scenario, within the range 0≤ p(s,w)≤ 1:

Ω(s) = argmin
w∈Wlegal(s)

t(s,w) (5.3)

p(s,w) = r(s,w,Ω(s)) (5.4)

Establishing a Baseline

The geometric mean is used to aggregate normalised relative performances due
to its multiplicative property [FW86]. For a given workgroup size, the average
performance p̄(w) across the set of all scenarios S can be found using the geometric
mean of performance relative to the oracle:

p̄(w) =
∏
s∈S

r(s,w,Ω(s))
1/|S|

(5.5)

The baseline workgroup size w̄ is the value which provides the best average case
performance across all scenarios. Such a baseline value represents the best possible
performance which can be achieved using a single, statically chosen workgroup
size. By defining Wsafe ∈ W as the intersection of legal workgroup sizes, the
baseline can be found using:

Wsafe = ∩
{
Wlegal(s)|s ∈ S

}
(5.6)

w̄ = argmax
w∈Wsafe

p̄(w) (5.7)
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5.5 Machine Learning

The challenge is to design a system which, given a set of prior observations of
the empirical performance of stencil codes with different workgroup sizes, predict
workgroup sizes for unseen stencils which will maximise the performance. The
OmniTune server supports three methods for achieving this.

5.5.1 Predicting Oracle Workgroup Size

The first approach to predicting workgroup sizes is to consider the set of possible
workgroup sizes as a hypothesis space, and to use a classifier to predict, for a
given set of features, the workgroup size which will provide the best performance.
The classifier takes a set of training scenarios Straining, and generates labelled
training data as pairs of scenario features f(s) and observed oracle workgroup
sizes:

T = {(f(s),Ω(s)) |s ∈ Straining} (5.8)

During testing, the classifier predicts workgroup sizes from the set of oracle work-
group sizes from the training set:

Wtraining = {Ω(s)|s ∈ Straining} (5.9)

This approach presents the problem that after training, there is no guarantee
that the set of workgroup sizes which may be predicted is within the set of legal
workgroup sizes for future scenarios:

⋃
∀s∈Stesting

Wlegal(s) *Wtraining (5.10)

This may result in a classifier predicting a workgroup size which is not legal
for a scenario, w 6∈Wlegal(s), either because it exceeds Wmax(s), or because the
parameter is refused. For these cases, I evaluate the effectiveness of three fallback
strategies to select a legal workgroup size:

1. Baseline — select the workgroup size which is known to be safe w <Wsafe,
and provides the highest average case performance on training data.

2. Random — select a random workgroup size which is known from prior
observations to be legal w ∈Wlegal(s).
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3. Nearest Neighbour — select the workgroup size which from prior observa-
tions is known to be legal, and has the lowest Euclidian distance to the
prediction.

See Algorithm 1 for definitions.

5.5.2 Predicting Stencil Code Runtime

A problem of predicting oracle workgroup sizes is that it requires each training
point to be labelled with the oracle workgroup size which can be only be evaluated
using an exhaustive search. An alternative approach is to build a model to
attempt to predict the runtime of a stencil given a specific workgroup size. This
allows for training on data for which the oracle workgroup size is unknown, and
has the secondary advantage that this allows for an additional training data point
to be gathered each time a stencil is evaluated. Given training data consisting
of (f(s),w, t) tuples, where s is a scenario, w is the workgroup size, and t is the
observed mean runtime, we can train a regressor g(f(s),w) which predicts the
mean runtime of an unseen scenario. The predicted oracle workgroup size Ω̄(s)
is then the w value which minimises the output of the regressor:

Ω̄(s) = argmin
w∈Wlegal(s)

g(f(s),w) (5.11)

Note that since we cannot know in advance which workgroup sizes will be refused,
that is,Wrefused(s) cannot be statically determined, this process must be iterated
until a workgroup size which not refused is selected. Algorithm 2 shows this
process.

5.5.3 Predicting Relative Performance of Workgroup Sizes

Accurately predicting the runtime of an arbitrary program is a difficult problem
due to the impacts of flow control. In such cases, it may be more effective to
instead predict the relative performance of two different workgroup sizes for the
same program. To do this, we select a baseline workgroup size wb ∈Wsafe, and
train a regressor g(f(s),w,wb) with training data labelled with the relative per-
formance over the baseline r(w,wb). Predicting the optimal workgroup requires
maximising the output of the regressor:

Ω̄(s) = argmax
w∈Wlegal(s)

g(f(s),w,wb) (5.12)
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Algorithm 1 Selecting optimal workgroup sizes using classification
Require: scenario s d.
Ensure: workgroup size w

1: procedure Baseline(s) . Select the best w from Wsafe.
2: w← classify(f(s))
3: if w ∈Wlegal(s) then
4: return w

5: else
6: return argmax

w∈Wsafe

(∏
s∈Straining

p(s,w)
)1/|Straining|

7: end if
8: end procedure

9: procedure Random(s) . Select a random workgroup size.
10: w← classify(f(s))
11: while w 6∈Wlegal(s) do
12: w← random choice w ∈

{
w|w < Wmax(s),w 6∈Wrefused(s)

}
13: end while
14: return w

15: end procedure

16: procedure NearestNeighbour(s) . Select the closest workgroup size to prediction.
17: w← classify(f(s))
18: while w 6∈Wlegal(s) do
19: dmin←∞
20: wclosest← null
21: for c ∈

{
w|w < Wmax(s),w 6∈Wrefused(s)

}
do

22: d←
√

(cr−wr)2 +(cc−wc)2

23: if d < dmin then
24: dmin← d

25: wclosest← c

26: end if
27: end for
28: w← wclosest

29: end while
30: return w

31: end procedure
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Algorithm 2 Selecting workgroup sizes by predicting program runtimes
Require: kernel features k, hardware features h, dataset features d.
Ensure: workgroup size w

1: W ←{w|w < Wmax(s)}−Wrefused(s) . Set of possible workgroup sizes.
2: w← argmin

w∈W
g(f(s),w) . Predict candidate workgroup size.

3: while w 6∈Wlegal(s) do
4: W ←W −{w} . Remove candidate from set.
5: w← argmin

w∈W
g(f(s),w) . Select next candidate workgroup size.

6: end while
7: return w

Algorithm 3 Selecting workgroup sizes by predicting relative performance
Require: kernel features k, hardware features h, dataset features d, baseline wb.
Ensure: workgroup size w

1: W ←{w|w < Wmax(s)}−Wrefused(s) . Set of possible workgroup sizes.
2: w← argmax

w∈W
g(f(s),w,wb) . Predict candidate workgroup size.

3: while w 6∈Wlegal(s) do
4: W ←W −{w} . Remove candidate from set.
5: w← argmax

w∈W
g(f(s),w,wb) . Select next candidate workgroup size.

6: end while
7: return w

As with predicting runtimes, this process must be iterated to accommodate for
the emergent properties of Wlegal(s). See Algorithm 3 for a description of this
process.

5.6 Implementation

The OmniTune framework is implemented as a set of Python classes and in-
terfaces, which are inherited from or implemented to target specific autotuning
cases. The entire framework consists of 8987 lines of Python code, of which 976 is
dedicated to the SkelCL frontend. By design, the client-server model minimises
the impact of number of modifications that are required to enable autotuning in
client applications. The only modification required is to replace the hardcoded
values for workgroup size with a subroutine to request a workgroup size from
the OmniTune server over a DBUS connection. The server is implemented as a
standalone Python program, and uses sqlite to maintain local data caches. The
OmniTune remote is an Amazon Web Services virtual machine instance, using
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MySQL as the relational data store. Figure 5.1 shows the relational database
schema used to store stencil runtime information. Additional tables store data in
coalesced forms for use as machine learning training data.

For classification, five classifiers are supported, chosen for their contrasting
properties: Naive Bayes, SMO, Logistic Regression, J48 Decision tree, and Ran-
dom Forest. For regression, a Random Forest with regression trees is used, chosen
because of its efficient handling of large feature sets, compared to linear models.

5.7 Summary

This section has described has the application of OmniTune for predicting work-
group sizes of SkelCL stencil programs, using three different machine learning
approaches. The first approach is to predict the optimal workgroup size for a
given program based on training data which included the optimal workgroup
sizes for other stencils. The second approach is to select a workgroup sizex by
sweeping the space of possible workgroup sizes, predicting the runtime a program
with each. The third approach is to select a workgroup size by sweeping the space
of possible workgroup sizes, predicting the relative gain of each compared to a
known baseline. In the next section, we will describe the process for collecting
empirical performance data.
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Figure 5.1: Database schema for storing SkelCL stencil runtimes. Feature lookup
tables and normalisation are used to provide extremely compact storage, requiring
only 56 bytes for each additional runtime of a known stencil program.



Chapter 6

Exploring the Workgroup Size Space

6.1 Introduction

This chapter describes an exhaustive enumeration of the workgroup size opti-
misation space for 429 combinations of architecture, program, and dataset. It
contains the methodology used to collect empirical performance data on which
to base performance comparisons of different workgroup sizes, and the steps nec-
essary to obtain repeatable results.

6.2 Experimental Setup

Table 6.1 describes the experimental platforms used. All runtimes were recorded
with millisecond precision using either the system clock or OpenCL’s Profiling
API. Measurement noise was minimised by reducing system load through dis-
abling all unwanted services and graphical environments, and exclusive single-user
access was ensured for each platform. Frequency governors for each CPU were
disabled, and the benchmark processes were set to the highest priority available

Processor Memory OpenCL Devices Driver

Intel i7-2600 8 GB Nvidia GTX TITAN OpenCL 1.1
Intel i7-2600K 16 GB Nvidia GTX 690 OpenCL 1.1
Intel i7-3820 8 GB 4× Nvidia GTX 590 OpenCL 1.1
Intel i7-3820 8 GB CPU, 2× AMD Tahiti 7970 OpenCL 1.2
Intel i5-4570 8 GB CPU OpenCL 1.2
Intel i5-2430M 8 GB CPU OpenCL 1.2

Table 6.1: Specification of experimental platforms.

53
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Name Compute units Frequency Local Memory Global Cache Global Memory

AMD Tahiti 7970 32 1000 Hz 32 KB 16 KB 2959 MB
Intel i5-2430M 4 2400 Hz 32 KB 256 KB 7937 MB
Intel i5-4570 4 3200 Hz 32 KB 256 KB 7901 MB
Intel i7-3820 8 1200 Hz 32 KB 32 KB 7944 MB
Nvidia GTX 590 1 1215 Hz 48 KB 256 KB 1536 MB
Nvidia GTX 690 8 1019 Hz 48 KB 128 KB 2048 MB
Nvidia GTX TITAN 14 980 Hz 48 KB 224 KB 6144 MB

Table 6.2: Specification of experimental OpenCL devices.

to the task scheduler. Datasets and programs were stored in an in-memory file
system.

6.2.1 Devices

Table 6.2 describes the OpenCL devices used for testing, as available on the
experimental platforms.

6.2.2 Benchmark Applications

In addition to the synthetic stencil benchmarks described in Section 5.2, six stencil
kernels taken from four reference implementations of standard stencil applications
from the fields of image processing, cellular automata, and partial differential
equation solvers are used:

• Game of Life Conway’s Game of Life [Con70] is a cellular automaton which
models the evolution of a regular grid of cells over discrete time steps. At
each time step, each cell value is updated to be either live or dead based on
it’s current state and the state of the one immediately neighbouring cell to
the north, south, east, and west.

• Heat Equation The heat equation is a partial differential equation which
describes the distribution of heat in a given region over time. Each iteration
of the stencil represents a discrete time step, and the value of each cell (i.e.
the temperature) is smoothed based on the temperatures of surrounding
cells and the thermal conductivity of the material being simulated.

• Gaussian Blur The Gaussian blur is a common image processing algo-
rithm, used to reduce noise and detail in an image. A two dimensional



6.2. Experimental Setup 55

Name North South East West Instruction Count

synthetic-a 1–30 1–30 1–30 1–30 67–137
synthetic-b 1–30 1–30 1–30 1–30 592–706
gaussian 1–10 1–10 1–10 1–10 82–83
gol 1 1 1 1 190
he 1 1 1 1 113
nms 1 1 1 1 224
sobel 1 1 1 1 246
threshold 0 0 0 0 46

Table 6.3: Stencil kernels, border sizes (north, south, east, and west), and static
instruction counts.

Width Height Type in Type out

512 512 float float
1024 1024 float float
2048 2048 float float
4096 4096 float float
4096 4096 int int

Table 6.4: Description of experimental datasets.

Gaussian blur defines a function to compute a pixel value based on the
value of neighbouring pixels. Gaussian blurs are parameterised by a ra-
dius which define symmetric, square stencil regions about the centre pixel.
Unlike the previous two applications, the Gaussian blur is not an iterative
stencil.

• Canny Edge Detection The Canny edge detection algorithm is a multi-
stage approach to detecting edges in images [Can86]. It consists of four
distinct stages: a noise reduction operation, an edge detection operation, a
non-maximum suppression, and a threshold operation. Each step is imple-
mented as a separate SkelCL stencil and combined into a SkelCL StencilSe-
quence.

Table 6.3 shows details of the stencils kernels for these reference applications, and
the synthetic training benchmarks used.

6.2.3 Datasets

For each benchmark, multiple dataset sizes were used, as shown in table 6.4.
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Description Type Cost

c Kernel compilation times Host Fixed
p Skeleton prepare times Host Fixed
u Host → Device transfers Device Fixed
k Kernel execution times Device Iterative
d Device → Host transfers Device Fixed
s Devices ↔ Host (sync) transfers Host Iterative

Table 6.5: Execution phases of a SkelCL stencil skeleton. “Fixed” costs are those
which occur up to once per stencil invocation. “Iterative” costs are those which scale
with the number of iterations of a stencil.

6.2.4 Sampling Strategy

The number of “moving parts” in the modern software stack provides multiple
sources of noise when measuring program execution times. As such, evaluating
the relative performance of different versions of programs requires a judicious
approach to isolate the appropriate performance metrics and to take a statistically
rigorous approach to collecting data.

Isolating the Impact of Workgroup Size

The execution of a SkelCL stencil application can be divided into 6 distinct
phases, shown in Table 6.5.

• Kernel compilation times Upon invocation, template substitution is per-
formed of the user code into the stencil skeleton implementation, then com-
piled into an OpenCL program. Once compiled, the program binary is
cached for the lifetime of the host program.

• Skeleton preparation times Before a kernel is executed, a preparation
phase is required to allocate buffers for the input and output data on each
execution device.

• Host → Device and Device → Host transfer times Data must be
copied to and from the execution devices before and after execution of the
stencils, respectively. Note that this is performed lazily, so iterative stencils
do not require repeated transfers between host and device memory.

• Kernel execution times This is the time elapsed executing the stencil
kernel, and is representative of “work done”.
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• Devices ↔ Host (sync) transfer times For iterative stencils on mul-
tiple execution devices, an overlapping halo region is shared at the border
between the devices’ grids. This must be synchronised between iterations,
requiring an intermediate transfer to host memory, since device to device
memory is not currently supported by OpenCL.

For each of the six distinct phases of execution, accurate runtime information
can be gathered either through timers embedded in the host code, or using the
OpenCL clGetEventProfilingInfo() API for operations on the execution de-
vices. For single-device stencils, the total time t of a SkelCL stencil application
is simply the sum of all times recorded for each distinct phase:

t= 1cT + 1pT + 1uT + 1kT + 1dT (6.1)

Note that there are no synchronisation costs s. For applications with n execution
devices, the runtime can be approximate as the sum of the sequential host-side
phases, and the sum of the device-side phases divided by the number of devices:

t≈
n∑
i=1

(1cT
i ) + 1pT + 1sT +

∑n
i=1 1uT

i + 1kT
i + 1dT

i

n
(6.2)

The purpose of tuning workgroup size is to maximise the throughput of stencil
kernels. For this reason, isolating the kernel execution times k produces the
most accurate performance comparisons, as it removes the impact of constant
overheads introduced by memory transfers between host and device memory, for
which the selection of workgroup size has no influence. Note that as demonstrated
in [GH11], care must be taken to ensure that isolating device compute time does
not cause misleading comparisons to be made between devices. For example, if
using an autotuner to determine whether execution of a given stencil is faster on a
CPU or GPU, the device transfer times u, d, and s would need to be considered.
For our purposes, we do not need to consider the location of the data in the
system’s memory as it is has no bearing on the execution time of a stencil kernel.

Validating Program Behaviour

Gold standard output was recorded by executing each of the real-world bench-
marks programs using the baseline workgroup size. The output of real-world
benchmarks with other workgroup sizes was compared to this gold standard out-
put to guarantee correct program execution.
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6.3 Summary

This section describes the methodology for collecting relative performance data of
SkelCL stencil benchmarks under different combinations of architecture, program,
dataset, and workgroup size. The next chapter evaluates these performance re-
sults, and analyses the performance of OmniTune at predicting workgroup sizes.
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Evaluation

7.1 Introduction

This chapter evaluates the performance of OmniTune when tasked with selecting
workgroup sizes for SkelCL stencil codes. First I discuss measurement noise
present in the experimental results, and the methods used to accommodate for it.
Then I examine the observed effect that workgroup size has on the performance of
SkelCL stencils. The effectiveness of each of the autotuning techniques described
in the previous chapters is evaluated using multiple different machine learning
algorithms. The prediction quality of OmniTune is scrutinised for portability
across programs, devices, and datasets.

Overview of Experimental Results

The experimental results consist of measured runtimes for a set of test cases,
collected using the methodology explained in the previous chapter. Each test case
τi consists of a scenario, workgroup size pair τi = (si,wi), and is associated with a
sample of observed runtimes from multiple runs of the program. A total of 269813
test cases were evaluated, which represents an exhaustive enumeration of the
workgroup size optimisation space for 429 scenarios. For each scenario, runtimes
for an average of 629 (max 7260) unique workgroup sizes were measured. The
average sample size of runtimes for each test case is 83 (min 33, total 16917118).
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Figure 7.1: Distribution of runtime samples for test cases from three devices. Each
plot contains a 35-bin histogram of 1000 samples, and a fitted kernel density estimate
with bandwidth 0.3. The sample mean is shown as a vertical dashed line. The top row
are from the Intel i5-4570, the second row from the Nvidia GTX 590, and the third
row from the AMD Tahiti 7970. In some of the plots, the distribution of runtimes is
bimodal, and skewed to the lower end of the runtimes range.
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7.2 Statistical Soundness

The complex interaction between processes competing for the finite resources of
a system introduces many sources for noise in program runtime measurements.
Before making any judgements about the relative performance of optimisation
configurations, we must establish the level of noise present in these measurements.
To do this, we evaluate the distribution of runtimes for a randomly selected 1000
test cases, recording 1000 runtime observations for each. We can then produce
fine-grained histograms of runtimes for individual test cases. Figure 7.1 shows an
example nine of these, for test cases from three devices. The plots show that the
distribution of runtimes is not always Gaussian; rather, it is sometimes bimodal,
and generally skewed to the lower end of the runtime range, with a long “tail” to
the right. This fits our intuition that programs have a hard minimum runtime
enforced by the time taken to execute the instructions of a program, and that
noise introduced to the system extends this runtime. For example, preempting
an OpenCL process on a CPU so that another process may run may cause the
very long tail visible in Figure 7.1a.

The central limit theorem allows the assumption of an underlying Gaussian
distribution for samples of size ≥ 30 [GBE07]. Given our minimum sample size
of 33, we can use 95% confidence intervals to provide statistical confidence that
the arithmetic mean of observed runtimes with respect to the true mean. As
the number or samples increases, we should expect the size of the confidence
interval to shrink. This is illustrated in Figure 7.2, which plots the average
size of 95% confidence intervals across the 1000 test cases, normalised to their
respective means, as a function of sample size. It shows the diminishing returns
that increasing sample size provides. For example, increasing the sample count
from 10 to 30 results in an approximate 50% reduction in confidence interval size.
Increasing the sample size from 30 to 50 results in only a 25% reduction.

By comparing the average confidence interval at different sample counts against
the full experiment results of 269813 test cases, we can assert with 95% confi-
dence that the true mean for each test case is within 2.5% of the sample mean
(given the average number of samples per test case), or 3.7% in the worst case
(at the minimum number of samples). Since the differences between baseline and
optimal workgroup sizes is often well in excess of 100%, there is no overlap of
confidence intervals between competing workgroup sizes.



62 Chapter 7. Evaluation

200 400 600 800 1000

Number of samples

0%

2%

4%

6%

8%

10%

12%

9
5

%
C

I
/

m
ea

n

Figure 7.2: Ratio of confidence interval to mean as a function of sample count.
Two dashed lines indicate the confidence intervals at the minimum (3.7%) and mean
(2.5%) number of samples used in the experimental dataset.
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Figure 7.3: Accuracy compared to the oracle as a function of the number of workgroup
sizes used. The best accuracy that can be achieved using a single statically chosen
workgroup size is 15%. Achieving 50% oracle accuracy requires a minimum of 14
distinct workgroup sizes.

7.3 Workgroup Size Optimisation Space

In this section we explore the impact that the workgroup size optimisation space
has on the performance of stencil codes.

7.3.1 Oracle Workgroup Sizes

For each scenario s, the oracle workgroup size Ω(s) is the workgroup size which
resulted in the lowest mean runtime. If the performance of stencils were indepen-
dent of workgroup size, we would expect that the oracle workgroup size would
remain constant across all scenarios s ∈ S. Instead, we find that there are 135
unique oracle workgroup sizes, with 31.5% of scenarios having a unique work-
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group size. This demonstrates the difficult in attempting to tune for optimal
parameter values, since 14 distinct workgroup sizes are needed to achieve just
50% of the oracle accuracy (Figure 7.3), although it is important to make the
distinction that oracle accuracy and performance are not equivalent.

Figure 7.4a shows the distribution of oracle workgroup sizes, demonstrating
that there is clearly no “silver bullet” workgroup size which is optimal for all
scenarios, and that the space of oracle workgroup sizes is non linear and complex.
The workgroup size which is most frequently optimal is w(64×4), which is optimal
for 15% of scenarios. Note that this is not adequate to use as a baseline for static
tuning, as it does not respect legality constraints, that is w(64×4) 6∈Wsafe.

7.3.2 Workgroup Size Legality

As explained in Section 5.4, the space of legal workgroup sizes Wlegal(s) for a
given scenario s comprises all workgroup sizes which: do not exceed the maximum
allowed by the OpenCL device and kernel Wmax(s), and are not refused by the
OpenCL runtime.

Maximum workgroup sizes

We define the coverage of a workgroup size to be the ratio 0 ≤ x ≤ 1 between
the number of scenarios for which the workgroup size was less than Wmax(s),
normalised to the total number of workgroup sizes. A coverage of 1 implies a
workgroup size which is always legal for all combinations of stencil and architec-
ture. A workgroup size with a coverage of 0 is never legal. Figure 7.5 plots the
coverage of a subset of the workgroup size optimisation space.

Note that sinceWmax(s) defines a hard limit for a given s, if statically selecting
a workgroup size, one must limit the optimisation space to the smallest Wmax(s)
value, i.e. only the workgroup sizes with a coverage of 1. The observed Wmax(s)
values range from 256–8192, which results in up to a 97% reduction in the size of
the optimisation space when Wmax(s) = 8192, even though only 14% of scenarios
have the minimum value of Wmax(s) = 256.

Refused Parameters

In addition to the hard constraints imposed by the maximum workgroup size,
there are also refused parameters, which are workgroup sizes which are rejected
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Figure 7.4: Log frequency counts for: (a) optimality, and (b) legality for a subset of
the aggregated workgroup size optimisation space, wc ≤ 100,wr ≤ 100. The space of
oracle workgroup size frequencies is highly irregular and uneven, with a peak frequency
of w(64×4). Legality frequencies are highest for smaller row and column counts (where
w <Wmax(s)∀s ∈ S), and wc and wr values which are multiples of 8.
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Figure 7.5: A subset of the aggregated workgroup size optimisation space, wc ≤
100,wr ≤ 100, showing the coverage of each workgroup size, i.e. the ratio of scenar-
ios for which a workgroup size satisfies architecture and kernel enforced constraints
(Wmax(s)). Workgroup sizes with a coverage of < 1 fail to satisfy these constraints
for one or more scenarios. Only workgroup sizes with a coverage of 1 may be used
for static tuning, which greatly reduces the size of the optimisation space. Observed
Wmax(s) values are multiples of 256, hence the abrupt “steps” in coverage.

Parameter Refused (%)

18×24 0.32
26×16 0.31
28×32 0.31
4×2 0.31
16×14 0.30
14×40 0.30
24×36 0.30
36×24 0.30
4×26 0.30
4×6 0.30

Parameter Refused (%)

8×18 0.30
8×22 0.30
14×48 0.29
28×24 0.29
30×8 0.29
48×14 0.29
8×10 0.29
10×8 0.28
24×18 0.28
26×32 0.28

Parameter Refused (%)

26×8 0.28
2×32 0.28
2×48 0.28
4×42 0.28
50×4 0.28
10×48 0.28
12×24 0.28
16×18 0.28
24×2 0.28
48×18 0.28

Table 7.1: The thirty most refused parameters, ranked in descending order. There is
little correlation between the size of workgroup and the likelihood that it is refused,
suggesting that the cause of refused parameters is not a resource constraint, but a
behavioural issue.
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Figure 7.6: The ratio of test cases with refused workgroup sizes, grouped by: (a)
OpenCL device ID; (b) device vendor ID. Parameters were refused most frequently
by Intel i5 CPUs, then by previous-generation NVIDIA GPUs. No parameters were
refused by AMD devices.

by the OpenCL runtime and do not provide a functioning program. Of the 8504
unique workgroup sizes tested, 11.4% were refused in one or more test cases. An
average of 5.5% of all test cases lead to refused parameters. For a workgroup size
to be refused, it must satisfy the architectural and program-specific constraints
which are exposed by OpenCL, but still lead to a CL_OUT_OF_RESOURCES error
when the kernel is enqueued. Table 7.1 lists the most frequently refused parame-
ters, and the percentage of test cases for which they were refused. While uncom-
mon, a refused parameter is an obvious inconvenience to the user, as one would
expect that any workgroup size within the specified maximum should behave
correctly, if not efficiently. Figure 7.4b visualises the space of legal workgroup
sizes by showing the frequency counts that a workgroup size is legal. Smaller
workgroup sizes are legal most frequently due to the Wmax(s) constraints. Be-
yond that, workgroup sizes which contain wc and wr values which are multiples
of eight are more frequently legal, which is a common width of SIMD vector
operations [Int12].

Experimental results suggest that the problem is vendor — or at least device
— specific. By grouping the refused test cases by device and vendor, we see a
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much greater quantity of refused parameters for test cases on Intel CPU devices
than any other type, while no workgroup sizes were refused by the AMD GPU.
Figure 7.6 shows these groupings. The exact underlying cause for these refused
parameters is unknown, but can likely by explained by inconsistencies or errors
in specific OpenCL driver implementations.

As these OpenCL implementations are still in active development, it is antici-
pated that errors caused by unexpected behaviour will become more infrequent as
the technology matures. Figure 7.6a shows that the ratio of refused parameters
decreases across the three generations of Nvidia GPUs: GTX 590 (2011), GTX
690 (2012), and GTX TITAN (2013). The same trend is apparent for the two In-
tel i5s: i5-2430M (2011), and i5-4570 (2013), although not for the i7-3820 (2012).
For now, it is imperative that any autotuning system is capable of adapting to
these refused parameters by suggesting alternatives when they occur.

7.3.3 Baseline Parameter

The baseline parameter w̄ is the workgroup size which provides the best overall
performance while being legal for all scenarios. It is the workgroup size w ∈Wsafe

which maximises the output of the performance function p̄(w). As shown in Ta-
ble 7.2, only a single workgroup size w(4×4) from the set of experimental results is
found to have a legality of 100%, suggesting that an adaptive approach to setting
workgroup size is necessary not just for the sake of maximising performance, but
also for guaranteeing program correctness.

The utility of the baseline parameter is that it represents the best performance
that can be achieved through static tuning of the workgroup size parameter. We
can evaluate the performance of suboptimal workgroup sizes by calculating the
geometric mean of their performance for a particular scenario p(s,w) across all
scenarios, p̄(w). The baseline parameter p̄(w̄) achieves only 24% of the available
performance. Figure 7.7 plots workgroup size legality and performance, showing
that there is no clear correlation between the two. In fact, the workgroup sizes
with the highest mean performance are valid only for scenarios with the largest
Wmax(s) value, which account for less than 1% of all scenarios, further reinforcing
the case for adaptive tuning. The workgroup sizes with the highest legality are
listed in Table 7.2, and the workgroup sizes with the highest performance are
listed in Table 7.3.
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Figure 7.7: Average legality and performance relative to the oracle of all workgroup
sizes. Clearly, the relationship between legality and performance is not linear. Distinct
vertical “bands” appear between regions of legality caused by the different Wmax(s)
values of devices. The irregular jitter between these vertical bands is caused by refused
parameters.

Figure 7.8 shows the speedup of the oracle workgroup size over the baseline
parameter w(4×4) for all scenarios. If we assume that sufficiently pragmatic de-
veloper with enough time would eventually find this static optimal, then this
provides a reasonable comparison for calculating speedups of an autotuner for
workgroup size. Comparing the runtime of workgroup sizes relative to the oracle
allows us to calculate upper bounds on the possible performance which can be
expected from autotuning.

7.3.4 Speedup Upper Bounds

For a given scenario s, the ratio of the workgroups sizes from Wlegal(s) which
provide the longest and shortest mean runtimes is used to calculate an upper
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Parameter Legality (%) Performance (%)

4×4 100.0 34.6
32×4 97.4 79.2
40×4 96.5 77.5
16×4 96.3 65.5
56×4 95.6 81.0
16×8 95.6 75.7
8×4 95.6 51.7
24×4 95.3 69.6
24×8 95.1 78.4
48×4 94.6 83.1
8×8 94.6 63.4
4×16 94.6 50.1
4×8 94.4 41.5
8×16 94.2 70.6
4×40 94.2 50.2
4×32 93.9 53.6
4×48 93.9 51.9
4×56 93.9 50.3
4×24 93.5 50.4
8×24 92.5 69.5
64×4 84.1 87.5
16×16 84.1 74.5
24×16 83.2 75.1
32×8 83.0 81.3
40×16 82.8 80.3

Table 7.2: The 25 workgroup sizes
with the greatest legality.

Parameter Legality (%) Performance (%)

270×24 0.2 97.5
174×38 0.2 94.4
310×20 0.2 94.2
546×10 0.2 93.0
282×16 0.2 93.0
520×10 0.2 92.9
520×12 0.2 92.3
746×8 0.2 92.0
38×140 0.2 91.9
300×18 0.2 91.3
700×6 0.2 91.1
96×24 24.7 90.6
88×48 0.7 90.6
820×6 0.2 90.4
88×32 24.9 90.0
96×32 25.4 89.8
88×40 21.0 89.7
80×16 30.3 89.6
722×10 0.2 89.5
280×24 0.2 89.5
910×6 0.2 89.4
88×24 28.7 89.4
64×24 29.4 89.2
80×32 24.5 89.2
72×16 29.4 89.2

Table 7.3: The 25 workgroup sizes
with the greatest mean performance.

bound for the possible performance influence of workgroup size:

rmax(s) = r(s, argmax
w∈Wlegal(s)

t(s,w),Ω(s)) (7.1)

When applied to each scenario s ∈ S of the experimental results, we find the
average of speedup upper bounds to be 15.14× (min 1.03×, max 207.72×). This
demonstrates the importance of tuning stencil workgroup sizes — if chosen incor-
rectly, the runtime of stencil programs can be extended by up to 207.72×. Note
too that for 5 of the scenarios, the speedup of the best over worst workgroup
sizes is ≤ 5%. For these scenarios, there is little benefit to autotuning; however,
this represents only 1.1% of the tested scenarios. For 50% of the scenarios, the
speedup of the best over worst workgroup sizes is ≥ 6.19×.
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Figure 7.8: Speedup of oracle workgroup size over: the worst performing workgroup
size for each scenario (Max), the statically chosen workgroup size that provides
the best overall performance (w(4×4)), and the human expert selected parameter
(w(32×4)). Note that the human expert parameter is not legal for all scenarios.

7.3.5 Human Expert

In the original implementation of the SkelCL stencil skeleton [Bre13], Breuer
selected a workgroup size of w(32×4) in an evaluation of 4 stencil operations on a
Tesla S1070 system. We can use this as an additional parameter to compare the
relative performance of workgroup sizes against. However, the w(32×4) workgroup
size is invalid for 2.6% of scenarios, as it is refused in 11 test cases. By device,
those are: 3 on the GTX 690, 6 on the i5-2430M, and 2 on the i5-4570. For the
scenarios where w(32×4) is legal, the human expert chosen workgroup size achieves
an impressive geometric mean of 79.2% of the oracle performance. The average
speedup of oracle workgroup sizes over the workgroup size selected by a human
expert is 1.37× (min 1.0×, max 5.17×). Since the workgroup size selected by the
human expert is not legal for all scenarios, we will examine the effectiveness of
heuristics for tuning workgroup size.
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7.3.6 Heuristics

In this section we will consider the effectiveness of instead selecting workgroup
size using two types of heuristics. The first, using the maximum workgroup size
returned by the OpenCL device and kernel APIs to select the workgroup size
adaptively. The second, using per-device heuristics, in which the workgroup size
is selected based on the specific architecture that a stencil is operating on.

Using maximum legal size

A common approach taken by OpenCL developers is to set the workgroup size for
a kernel based on the maximum legal workgroup size queried from the OpenCL
APIs. For example, to set the size of 2D workgroup, a developer the square root of
the (scalar) maximum wgsize to set the number of columns and rows (since wc ·wr
must be < Wmax(s)). To consider the effectiveness of this approach, we group
the workgroup size performances based on the ratio of the maximum allowed for
each scenario. We can also perform this for each of the two dimensions — rows
and columns — of the stencil workgroup size.

Figure 7.9 shows the distribution of runtimes when grouped this way, demon-
strating that the performance of (legal) workgroup sizes are not correlated with
the maximum workgroup sizes Wmax(s). However, when considering individual
components, we observe that the best median workgroup size performances are
achieved with a number of columns that is between 10% and 20% of the maxi-
mum, and a number of rows that is between 0% and 10% of the maximum.

Per-device workgroup sizes

One possible technique to selecting workgroup size is to tune particular values
for each targeted execution device. This approach is sometimes adopted for cases
with particularly high requirements for performance on a single platform, so it
produces an interesting contrast to evaluating a machine learning approach, which
attempts to predict workgroup sizes for unseen platforms without the need for
an expensive exploration phase on the new platform.

Figure 7.10 shows the performance of workgroup sizes relative to the oracle
across scenarios grouped by: kernel, device, and dataset. When grouped like
this, a number of observations can made. First is that not all of the kernels are
sensitive to tuning workgroup size to the same degree. The sobel kernel has the
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Device Oracle Legality Perf. min Perf. avg.

AMD Tahiti 7970 48×4 1.0 0.54 0.91
Intel i5-2430M 64×16 0.8 0.37 0.91
Intel i5-4570 88×8 0.89 0.33 0.89
Intel i7-3820 40×24 0.95 0.76 0.97
NVIDIA GTX 590 12×x2 0.8 0.2 0.9
NVIDIA GTX 690 64×4 0.93 0.32 0.84
NVIDIA GTX TITAN 64×4 1.0 0.26 0.81
GPUs 64×4 0.76 0.26 0.86
CPUs 88×8 0.88 0.33 0.91

Table 7.4: Selecting workgroup size using a per-device heuristic. The mode optimal
workgroup size for each device type w̄ is evaluated based on legality, and relative
performance to the oracle (minimum and average) when legal.

lowest median performance, indicating that it is the most profitable to tune, while
the threshold kernel is the least profitable. Similarly, the Intel i7-3820 is far less
amenable to tuning than the other devices, while the Intel i5-4570 is the most
sensitive to the workgroup size parameter. Such variances in the distributions of
workgroup sizes suggest that properties underlying the architecture, kernel, and
dataset all contribute towards the proper selection of workgroup size.

To test the performance of a per-device heuristic for selecting workgroup size,
we group the scenarios by device, and compare the relative performance of all
workgroup sizes for each group of scenarios. The most frequently optimal work-
group size w̄ for each device is selected, and the legality and performance of each
scenario using that workgroup size is evaluated. Table 7.4 shows the results of
this evaluation. The GTX 690 and GTX TITAN share the same w̄(64×4) value,
while every other device has a unique optimum. The general case performance of
these per-device parameters is very good, although legality is only assured for the
GTX TITAN and AMD 7970 (which did not refuse any parameters). However,
the worst case performance of per-device workgroup sizes is poor for all except
the i7-3820 (which is least sensitive to tuning), suggesting that device alone is
not capable of reliably informing the choice of workgroup size.
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7.3.7 Summary

In this section we have explored the performance impact of the workgroup size
optimisation space. By comparing the relative performance of an average of 629
workgroup sizes for each of 429 scenarios, the following conclusions can be drawn:

1. The performance of a workgroup size for a particular scenario depends prop-
erties of the hardware, software, and dataset.

2. The performance gap between the best and workgroup sizes for a particular
combination of hardware, software, and dataset is up to 207.72×.

3. Not all workgroup sizes are legal, and the space of legal workgroup sizes can-
not statically be determined. Adaptive tuning of workgroup size is required
to ensure reliable performance.

4. Differing scenarios have wildly different optimal workgroup sizes, and the
best performance can be achieved using static tuning is optimal for only
15% of scenarios.

In the following section, we will evaluate the performance of OmniTune for se-
lecting workgroup sizes.

7.4 Autotuning Workgroup Sizes

In this section, we evaluate the performance of OmniTune for predicting work-
group sizes of SkelCL skeletons using the prediction techniques described in Sec-
tion 5.5. For each technique, we partition the experimental data into training and
testing sets, Straining ⊂ S and Stesting = S−Straining. A set of labelled training
data Dtraining is derived from Straining, and the prediction quality is testing using
the validation set Dtesting derived from Straining. We use multiple approaches to
partitioning test data to evaluate the prediction quality under different scenarios.
The processes for generating validation sets are:

• 10-fold — shuffle the set of all data and divide into 10 validation sets, each
containing 10% of the data. This process is repeated for 10 rounds, resulting
in 100 validations of 10 permutations of the data.
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Figure 7.9: Comparing workgroup performance relative to the oracle as function of:
(a) maximum legal size, (b) number of columns, and (c) number of rows. Each
workgroup size is normalised to the maximum allowed for that scenario, Wmax(s).
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Figure 7.10: Performance relative to the oracle of workgroup sizes across all test
cases, grouped by: (a) kernels, (b) devices, and (c) datasets.
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• Synthetic — divide the training data such that it consists solely of data
collected from synthetic benchmarks, and use data collected from real-world
benchmarks to test.

• Device — partition the training data into n sets, one for each device. Use
n− 1 sets for training, repeating until every partition has been used for
testing once.

• Kernel — partition the training data into n sets, one for each kernel. Use
n− 1 sets for training, repeating until every partition has been used for
testing once.

• Dataset — partition the training data into n sets, one for each type of
dataset. Use n− 1 sets for training, repeating until every partition has
been used for testing once.

For each autotuning technique, the results of testing using the different validation
sets are reported separately. The autotuning techniques evaluated are: using clas-
sifiers to predict the optimal workgroup size of a stencil, with fallback strategies
to handle illegal predictions; using regressors to predict the runtime of a stencil
using different workgroup sizes, and selecting the legal workgroup size which has
the lowest predicted runtime; and using regressors to predict the relative perfor-
mance of workgroup sizes over a baseline, and selecting the workgroup size which
has the highest predicted relative performance. We first describe the evaluation
strategies for each technique, before presenting experimental results and analysis.

7.4.1 Evaluating Classifiers

The methodology for selecting workgroup size using classifiers is described in
Section 5.5.1. Training data consists of pairs of feature vectors f(s) and oracle
workgroup sizes Ω(s):

Dtraining = {(f(s),Ω(s))|s ∈ Straining} (7.2)

Testing data are not labelled with oracle workgroup sizes:

Dtesting = {f(s)|s ∈ Stesting} (7.3)

Each classifier is evaluated using the three different classification techniques:
Baseline, Random, and NearestNeighbour, which differ in the way in
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which they handle illegal predictions. Illegal predictions occur either because the
classifier has suggested a parameter which does not satisfy the maximum work-
group size constraints w <Wmax(s), or because the workgroup size is refused by
OpenCL w ∈Wrefused(s). Workgroup sizes are predicted for each scenario in the
testing set, and the quality of the predicted workgroup size is evaluated using the
following metrics:

• accuracy (binary) — whether the predicted workgroup size is the true ora-
cle, p(f(s)) = Ω(s).

• validity (binary) — whether the classifier predicted a workgroup size which
satisfies the workgroup size constraints constraints, p(f(s))<Wmax(s).

• refused (binary) — whether the classifier predicted a workgroup size which
is refused, p(f(s)) ∈Wrefused(s).

• performance (real) — the relative performance of the predicted workgroup
size relative to the oracle, 0≤ r(p(f(s)),Ω(s))≤ 1.

• speedups (real) — the relative performance of the predicted workgroup size
relative to the baseline workgroup size w(4×4), and human expert workgroup
size w(32×4) (where applicable).

• time (real) — the round trip time required to make the prediction, as mea-
sured by the OmniTune client. This includes classification time and inter-
process communication overheads between the client and server.

The validty and refused metrics measure how often fallback strategies are required
to select a legal workgroup size w ∈Wlegal(s).

7.4.2 Evaluating Regressors

Sections 5.5.2 and 5.5.3 describe methodologies for selecting workgroup sizes by
predicting program runtimes or relative performance, respectively. The evalua-
tion approach for both methodologies is the same, only the training data differs.
For predicting runtimes, training data consists of feature vectors, labelled with
the mean observed runtime t(s,w) for all legal workgroup sizes:

Dtraining =
⋃

∀s∈Straining

{
(f(s), t(s,w))|w ∈Wlegal(s)

}
(7.4)
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For predicting speedups, the features vectors are labelled with observed speedup
over the baseline parameter w̄ (see Section 7.3.3) for all legal workgroup sizes:

Dtraining = ∪
{

(f(s), r(s,w,w̄))|w ∈Wlegal(s)
}
∀s ∈ Straining (7.5)

Test data consists of unlabelled feature vectors:

Dtesting = {f(s)|s ∈ Stesting} (7.6)

The quality of predicted workgroup sizes is evaluated using the following metrics:

• accuracy (binary) — whether the predicted workgroup size is the true ora-
cle, p(f(s)) = Ω(s).

• performance (real) — the relative performance of the predicted workgroup
size relative to the oracle, 0≤ r(p(f(s)),Ω(s))≤ 1.

• speedups (real) — the relative performance of the predicted workgroup size
relative to the baseline workgroup size w(4×4), and human expert workgroup
size w(32×4) (where applicable).

• time (real) — the round trip time required to make the prediction, as mea-
sured by the OmniTune client. This includes classification time and inter-
process communication overheads between the client and server.

Unlike with classifiers, the process of selecting workgroup sizes using regressors
is resistant to refused parameters, so no fallback strategies are required, and the
validity and refused metrics are not used.

7.4.3 Results and Analysis

The purpose of this evaluation is to test the effectiveness of machine learning-
enabled autotuning for predicting workgroup sizes of SkelCL stencils codes. First,
we consider the prediction performance of classifiers.
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With the exception of the ZeroR, which predicts only the baseline workgroup
size w(4×4), the classifiers achieve good speedups over the baseline. Average clas-
sification speedups across all validation sets range between 4.61× and 5.05×.
Figures 7.11 and 7.12 show a summary of results using 10-fold cross-validation
and cross-device validation, respectively. The highest average speedup is achieved
by SMO, and the lowest by Naive Bayes. The difference between average speedups
is not significant between the types of classifier, with the exception of SimpleLo-
gistic, which performs poorly when trained with synthetic benchmarks and tested
against real-world programs. This suggests the model over-fitting to features of
the synthetic benchmarks which are not shared by the real-world tests.

By isolating the test cases where classifiers predicted an illegal or refused
parameter, we can directly compare the relative effectiveness of each fallback
handler. The fallback handler with the best average case performance is Near-
estNeighbour, with an average speedup across all classifiers and validation
sets of 5.26×. The speedup of Random fallback handler is 3.69×, and 1.0×
for Baseline. Figure 7.14 plots the speedups of each fallback handler for all of
these isolated test cases. Interestingly, both the lowest and highest speedups are
achieved by the Random fallback handler, since it essentially performs a random
exploration of the optimisation space. However, the NearestNeighbour fall-
back handler provides consistently greater speedups for the majority of test cases,
indicating that it successfully exploits the structure of the optimisation spaces.

Figures 7.13a and 7.13b show a summary of results for classification using
regressors to predict program runtimes and speedups, respectively. Of the two
regression techniques, predicting the speedup of workgroup sizes is much more suc-
cessful than predicting the runtime. This is most likely caused by the inherent
difficulty in predicting the runtime of arbitrary programs, where dynamic factors
such as flow control and loop bounds are not captured by the kernel features
used in OmniTune, which instead use simple static static instruction counts and
densities. The average speedup achieved by predicting runtimes is 4.14×. For
predicting speedups, the average is 5.57×. Tables 7.5, 7.6, and 7.7 show mean per-
formances and speedups for: J48 classifier using the NearestNeighour fallback
strategy, classification using runtime regression, and classification using speedup
regression, respectively.

If we eliminate the 2.6% of test cases for which the workgroup size of w(32×4)

is illegal, we can compare the performance of OmniTune directly against the hu-
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Figure 7.11: Classification results for synthetic benchmarks. Each classifier is trained
on data from synthetic stencils, and tested for prediction quality using data from 6
real world benchmarks.
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Figure 7.12: Classification results of cross-device evaluation. Each classifier is trained
using data from n−1 devices, and tested for prediction quality using data for the nth

device.
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Figure 7.13: Evaluating the effectiveness of classification using regressors, by predict-
ing: (a) the workgroup size with the minimal runtime, and (b) the workgroup size
with the greatest speedup over a baseline.
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Figure 7.14: Comparison of fallback handlers, showing the speedup over baseline
parameter for all test cases where a classifier predicted an illegal workgroup size.

Job Performance Speedup Human Expert

10-fold 92% 5.65× 1.26×
Synthetic 92% 4.79× 1.13×
Device 85% 5.23× 1.17×
Kernel 89% 5.43× 1.21×
Dataset 91% 5.63× 1.25×
Average 90% 5.45× 1.22×

Table 7.5: Validation results for J48 and NearestNeighbour classification.

man expert chosen workgroup size. Figure 7.15 compares the speedups of all
such validation instances over the human expert parameter, for each autotuning
technique. The speedup distributions show consistent classification results for
the five classification techniques, with the speedup at the lower quartile for all
classifiers being ≥ 1.0×. The IQR for all classifiers is < 0.5, but there are out-
liers with speedups both well below 1.0× and well above 2.0×. In contrast, the
speedups achieved using runtime regression have a lower range, but also a lower
median and a larger IQR. Clearly, runtime regression is the least effective of the
evaluated autotuning techniques. Speedup regression is more successful, with the
highest median speedup of all the techniques. However, it also has a large IQR
and the lower quartile has a speedup value well below 1, meaning that for more
than 25% of test instances, the workgroup size selected did not perform as well
as the human expert selected workgroup size.

The prediction costs using regression are significantly greater than using clas-
sifiers. This is because, while a classifier makes a single prediction, the number of
predictions required of a regressor grows with the size of Wmax(s), since classifi-



84 Chapter 7. Evaluation

J4
8

N
a

iv
eB

ay
es

R
a

n
d

o
m

F
or

es
t

S
im

p
le

L
o

g
is

ti
c

S
M

O

R
u

n
ti

m
e

R
eg

re
ss

io
n

S
p

ee
d

u
p

R
eg

re
ss

io
n

0.0

0.5

1.0

1.5

2.0

2.5
S

p
ee

d
u

p
o

ve
r

h
u

m
a

n
ex

p
er

t

Figure 7.15: Distributions of speedups over human expert, ignoring cases where hu-
man expert prediction is invalid. Classifiers are using NearestNeighbour fallback
handlers. The speedup axis is fixed to the range 0–2.5 to highlight the IQRs, which
results in some outliers > 2.5 being clipped.

Job Performance Speedup Human Expert

10-fold 68% 4.13× 0.88×
Synthetic 78% 3.81× 1.06×
Device 69% 3.89× 0.97×
Kernel 74% 4.36× 1.04×
Dataset 72% 4.33× 0.98×
Average 70% 4.14× 0.92×

Table 7.6: Validation results for runtime regression.

Job Performance Speedup Human Expert

10-fold 89% 5.67× 1.10×
Synthetic 86% 4.48× 1.19×
Device 85% 5.18× 1.15×
Kernel 88% 5.38× 1.15×
Dataset 88% 5.53× 1.13×
Average 89% 5.57× 1.12×

Table 7.7: Validation results for speedup regression.



7.4. Autotuning Workgroup Sizes 85

20 40 60 80

Columns

0
2

0
4

0
6

0

R
ow

s

J48

(a)

20 40 60 80

Columns

0
2

0
4

0
6

0

R
ow

s

NaiveBayes

(b)

20 40 60 80

Columns

0
2

0
4

0
6

0

R
ow

s

RandomForest

(c)

20 40 60 80

Columns

0
2

0
4

0
6

0

R
ow

s

SMO

(d)

20 40 60 80

Columns

0
2

0
4

0
6

0

R
ow

s

Runtime Regression

(e)

20 40 60 80

Columns

0
2

0
4

0
6

0

R
ow

s

Speedup Regression

(f)

Figure 7.16: Heatmaps of classification errors for 10-fold cross-validation, showing a
subset of the optimisation space. The shading in each cells indicates if it is predicted
less frequently (blue), ore more frequently (red) than it is optimal. Colour gradients
are normalised across plots.
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cation with regression requires making predictions for all w ∈ {w|w <Wmax(s)}.
The fastest classifier is J48, due to the it’s simplicity (it can be implemented as
a sequence of nested if/else statements).

Figure 7.16 visualises the classification errors of each of the autotuning tech-
niques. It shows that while the performance of all of the classifiers is comparable,
the distribution of predictions is not. Only the NaiveBayes and RandomForest
classifiers predicted the human expert selected workgroup size of w(32×4) as fre-
quently, or more frequently, than it was optimal. The two regression techniques
were the least accurate of all of the autotuning techniques.

7.4.4 Summary

From an evaluation of 17 different autotuning techniques using 5 different types
of validation sets, the following conclusions about autotuning performance can
be drawn:

• In the case of classifiers predicting illegal workgroup sizes, the best fallback
strategy is to select the closest legal workgroup size.

• The performance of predicted workgroup sizes for unseen devices is within
8% of the performance for known devices.

• Predicting the runtime of stencils is the least effective of the evaluated
autotuning techniques, achieving an average of only 68% of the available
performance.

• Predicting the speedup of workgroup sizes provides the highest median
speedup, but more frequently predicts a poorly performing workgroup size
then the classifiers.

• Classification using regression costs an order of magnitude more time than
using classifiers. The J48 classifier has the lowest overhead.
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Conclusions

As the trend towards higher core counts and increasing parallelism continues, the
need for high level, accessible abstractions to manage such parallelism will con-
tinue to go. Autotuning proves a valuable aid for achieving these goals, providing
the benefits of low level performance tuning while maintaining ease of use, with-
out burdening developers with optimisation concerns. As the need for autotuned
parallelism rises, the desire for collaborative techniques for sharing performance
data must be met with systems capable of supporting this cross-platform learning.

In this thesis, I have presented my attempt at providing such a system, by
designing a novel framework which has the benefits of fast, “always-on” autotun-
ing, while being able to synchronise data with global repositories of knowledge
which others may contribute to. The framework provides an interface for auto-
tuning which is sufficiently generic to be easily re-purposed to target a range of
optimisation parameters.

To demonstrate the utility of this framework, I implemented a frontend for
predicting the workgroup size of OpenCL kernels for SkelCL stencil codes. This
optimisation space is complex, non linear, and critical for the performance of
stencil kernels, with up to a 207.72× slowdown if an improper value is picked.
Selecting the correct workgroup size is difficult — requiring a knowledge of the
kernel, dataset, and underlying architecture. The challenge is increased even
more so by inconsistencies in the underlying system which cause some workgroup
sizes to fail completely. Of the 269813 combinations of workgroup size, device,
program, and dataset tested; only a single workgroup size was valid for all test
cases, and achieved only 24% of the available performance. The value selected
by human experts was invalid for 2.6% of test cases. Autotuning in this space

87
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requires a system which is resilient these challenges, and several techniques were
implemented to address them.

Runtime performance of autotuned stencil kernels is very promising, achieving
an average 90% of the available performance with only a 3ms autotuning over-
head. Even ignoring the cases for which the human expert selected workgroup
size is invalid, this provides a 1.33× speedup, or a 5.57× speedup over the best
performance that can be achieved using static tuning. Classification performance
is comparable when predicting workgroup sizes for both unseen programs and
unseen devices. I believe that the combination of performance improvements and
the collaborative nature of OmniTune makes for a compelling case for the use
of autotuning as a key component for enabling performant, high level parallel
programming.

8.1 Critical Analysis

This section contains a critical analysis of the work presented in previous chapters.

OmniTune Framework

The purpose of the OmniTune framework is to provide a generic interface for run-
time autotuning. This is demonstrated through the implementation of a SkelCL
frontend; however, to truly evaluate the ease of use of this framework, it would
have been preferable to implement one or more additional autotuning frontends,
to target different optimisation spaces. This could expose any leakages in the
abstractions between the SkelCL-specific and generic autotuning components.

Synthetic Benchmarks

The OmniTune SkelCL frontend provides a template substitution engine for gen-
erating synthetic stencil benchmarks. The implementation of this generator is
rigidly tied to the SkelCL stencil format. It would be preferred if this template
engine was made more flexible, to support generation of arbitrary test programs.
Additionally, due to time constraints, I did not have the opportunity to explore
how the number of synthetic benchmarks in machine learning test data sets affects
classification performance.

One possible use of the synthetic stencil benchmark generator could be for
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creating minimal test cases of refused OpenCL parameters, so that bug reports
could be filed with the relevant implementation vendor. However, this would have
added a great level of complexity to the the generator, as it would have to isolate
and remove the dependency on SkelCL to generate minimal programs, requiring
significant implementation work.

Use of Machine Learning

The evaluation of OmniTune in this thesis uses multiple classifiers and regressors
to predict workgroup sizes. The behaviour of these classifiers and regressors is
provided by the Weka data mining suite. Many of these classifiers have parame-
ters which affect their prediction behaviour. The quality of the evaluation could
have been improved by exploring the effects that changing the values of these
parameters has on the OmniTune classification performance. It would also have
been informative to dedicate a portion of the evaluation to feature engineering,
evaluating the information gain of each feature and exploring the effects of feature
transformations on classification performance.

Evaluation Methodology

The evaluation compares autotuning performance against the best possible per-
formance that can be achieved using static tuning, a simple heuristic to tune
workgroup size on a per-device basis, and against the workgroup size chosen by
human experts. It would have been beneficial to also include a comparison of
the performance of these autotuned stencils against hand-crafted equivalent pro-
grams in pure OpenCL, without using the SkelCL framework. This would allow
a direct comparison between the performance of stencil kernels using high level
and low level abstractions, but could not be completed due to time constraints
and difficulties in acquiring suitable comparison benchmarks and datasets.

8.2 Future Work

Future work can be divided into two categories: continued development of Om-
niTune, and extending the behaviour of the SkelCL autotuner.

The cost of offline training with OmniTune could be reduced by exploring
the use of adaptive sampling plans, such as presented in [LOW09]. This could
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reduce the number of runtime samples required to distinguish good from bad
optimisation parameter values.

Algorithm 4 proposes the behaviour of a hybrid approach to selecting the
workgroup size of iterative SkelCL stencils. This approach attempts to exploit
the advantages of all of the techniques presented in this thesis. First, runtime
regression is used to predict the minimum runtime and a candidate workgroup
size. If, after evaluating this workgroup size, the predicted runtime turned out
to be inaccurate, then a prediction is made using speedup regression. Such a
hybrid approach would enable online tuning through the continued acquisition
of runtime and speedup performance, which would compliment the collaborative
aspirations of OmniTune, and the existing server-remote infrastructure.

Other skeleton optimisation parameters could be autotuned by SkelCL, in-
cluding higher level optimisations such as the selection of border region loading
strategy, or selecting the optimal execution device(s) for multi-device systems.
Optimisation parameters of additional skeletons could be autotuned, or the in-
teraction of multiple related optimisation parameters could be explored. Power
consumption could be used as an additional optimisation cotarget.
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Algorithm 4 Selecting workgroup size using a combination of classifiers and
regressors.
Require: kernel features k, hardware features h, dataset features d.
Ensure: workgroup size w

1: r← min
w∈Wlegal(s)

f(k,h,d,w) . Predict minimum runtime.

2: w← argmin
w∈Wlegal(s)

f(k,h,d,w) . Workgroup size for r.

3: tr← measure runtime of program with w

4: Submit(f(s),w,tr) . Submit observed runtime
5: if tr ≈ r then
6: return w . Predicted runtime is accurate.
7: else
8: W ←{w|w < Wmax(s)}
9: converged ← false

10: wb← baseline parameter
11: tb← measure runtime of runtime of program with wb

12: Submit(f(s),wb, tb) . Submit observed runtime
13: while not converged do
14: s← max

w∈W
g(k,h,d,w) . Predict best speedup.

15: w← argmax
w∈W

g(k,h,d,w) . Workgroup size for s.

16: t← measure runtime of program with s

17: Submit(f(s),w,t) . Submit observed runtime
18: sw← tt/t

19: Submit(f(s),w,sw) . Submit observed speedup
20: if sw ≈ s then
21: converged = true . Predicted speedup is accurate.
22: else
23: W = W −{w}
24: end if
25: end while
26: return w

27: end if
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